
HERON TRIANGLES AND MODULI SPACES 
STEVE ROSENBERG, MIKE SPILLANE, AND DAN WULF 

November 26, 2006 
 

1. INTRODUCTION 
 

 We teach triangle congruency every fall, proving and using the big five theorems – 
SSS, ASA, SAS, AAS and HL. Preparing to teach this a few years ago, a colleague, 
Chuck Garabedian, wondered aloud if triangles with the same area and perimeter are 
congruent. Before you read any further, either prove this or find a counterexample.  
 This is not an elementary question for a high school student. Even finding a specific 
counterexample a student will believe is not particularly straightforward. (The cat is out 
of the bag – counterexamples exist.) So instead of hunting for one counterexample, we 
set out to explore the set of all triangles with a fixed area and perimeter. Understanding 
the geometric structure of the set of all triangles, which we pretentiously call “the 
geometry of geometry,” led us to a year-long investigation in parts of geometry, algebra 
and number theory all related to Chuck’s original question.1  
 We would like to thank R. van Luijk for helpful comments.  
 
 
 Editor’s Note: This article attracted our attention for several reasons. The first is 
that it shows once again how simple-sounding questions about topics in high school 
mathematics often lead to investigations that take one to the frontiers of mathematical 
research.  
 The article also shows how collaborations of mathematicians and teachers can be 
productive and satisfying work for all involved. Steve, Mike, and Dan have been working 
together in a study group (as part of the Focus on Mathematics partnership in the Boston 
area) for several years and have formed an ongoing research team that is continually 
finding new problems to consider. Stay tuned for future articles on their findings.  
 The article also makes use of a kind of mathematical representation that can be used 
with benefit in many questions that arise in high school mathematics. The authors 
parametrize the triangles they investigate with a pair of numbers (the area and one side 
length), and, thinking of these pairs as coordinates for points, they create a moduli space 
for all triangles that share certain attributes. This idea of parametrizing phenomena with 
coordinates is useful all over mathematics.  
 The authors took several years to figure out and polish some of the ideas in this 
article, so readers may not want to try to digest the entire development in one sitting.  We 
read it through several times before things started to gel.  While the ideas are rather 
subtle, the machinery required lies squarely in the high school curriculum.  As we 
sometimes do with dense articles, we'll intersperse editorial notes throughout, filling in 
some details  that caused us to reach for a pencil.  Readers are encouraged to ignore our 
notes until they've wrestled with the details for themselves. 
 
                                                
1Geometer’s Sketchpad files for all figures are available at 
www.focusonmath.org/FOM/resources/publications. Several files contain animated components, allowing 
you to explore deeper properties of the figures. 



 
2. GEOMETRY TO ALGEBRA 

 
We first approached the problem by converting the geometry to algebra. We call the 
fixed area A, the fixed semiperimeter (half the perimeter) s, and the variable lengths of 
the sides of the triangle a, b, c. (Figure 1.) Insert Figure 1 around here. We can eliminate 
some of the variables using Heron’s formula A2 = s(s − c)(s − a)(s − b) and b = 2s − a − c 
to get  

A2 = s(s − c)(s − a)(s − (2s − a − c)). 
 
Solving for a by the quadratic formula gives  
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a =
2s− c
2

±
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4
−

A2

s(s− c)
. (2.1) 

This looks like a mess, but it tells us something: in order for a triangle to exist, we  
must have 
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c 2

4
−

A2

s(s− c)
> 0 , or 

€ 

f (c) = −sc3 + s2c2 − 4A2 ≥ 0. 

(Figure 2.) Insert Figure 2 around here. By a little calculus, the “evil cubic” f (c)  

has a local maximum at 
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⎝ 
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⎞ 
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⎟ , so for any triangle, we must have 
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A2 ≤ s4

27
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It is easy to check that an equilateral triangle has A2 = s4/27, so this gives an elementary 
calculus proof that an equilateral triangle maximizes area among triangles with fixed 
perimeter. (The usual proof involves multivariable calculus; for a clever proof without 

calculus, apply the geometric-arithmetic mean inequality 

€ 

xyz ≤
x + y + z( )3

27
 to  x = s − a, 

y = s − b, z = s − c in Heron’s formula.) 
 
Editor’s Note: The geometric-arithmetic mean inequality is usually stated in high school 
texts for two variables: If x and y are non-negative numbers, their geometric mean is 
never larger than their arithmetic mean, and equality holds only when x = y. In symbols,  

€ 

xy ≤
x + y( )
2

 

with equality only when x = y. In fact, there’s a similar inequality for any number of 
variables. For three variables, it says that  

€ 

xyz3 ≤
x+ y+ z( )
3

 

with equality only of x = y = z . This implies the inequality stated by the authors, and it 
also implies that if x + y + z is constant, xyz is maximized when x = y = z . And if x = s − 
a, y = s − b, and z = s − c, then 

x +y +z = s − a + s −b +s −c = 3s −(a +b +c) = 3s −2s = s a constant 



 Since 

€ 

A2

s
= (s− a)(s− b)(s− c) , 

€ 

A2

s
is largest (and hence A is largest) when  

s − a = s − b = s − c 
that is, when a = b = c.  
 
 By a little more calculus, when f(c) has a positive local maximum, it has two real 
positive roots.   
 
Editor’s Note: We’re not sure what the authors have in mind here, but note that f(c) = 
－c3 + c2 － 4A2 with A > 0. Since f(0) < 0 and f(c) is negative for large values of c, if 
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3
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⎟  > 0, the graph of f has to cross the c-axis twice—once between 0 and 

€ 

2
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and once at 

some value greater than 
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2
3
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For any c between these two roots, there exists a unique triangle with area A, side c and 
semiperimeter s, since by (2.1), A, s, c determine the pair a, b.  This shows that for any A, 
s satisfying (2.2) with strict inequality, there are infinitely many noncongruent triangles 
with the same A and s.  So the answer to Chuck’s question is definitely not. 
 Now that we know counterexamples exist, the following exercise becomes 
meaningful: 
 
Exercise 1:  Show that the radius of the incircle (the circle inscribed in a triangle) is the 
same for all triangles with fixed area and perimeter. 

 
3 FROM ALGEBRA BACK TO GEOMETRY 

 
 
 While we solved our original problem algebraically, the solution is a little 
unsatisfying, since we cannot explicitly find the positive roots of the evil cubic f(c), 
(hence its name).  To get a better qualitative understanding of the geometry, we need to 
keep track of all possible triangles at once. 
 As a first step, we realized that in the original problem we might as well assume s = 
1, as an infinite family of triangles with fixed A, s can be scaled to an infinite family with 

corresponding constants 

€ 

A
s2

, 1.  This means we need to keep track of all possible triangles 

only up to similarity. 
 So, from now on, set s = 1.  Let the area A be variable.  For fixed c, yet another 
calculus exercise shows that the maximum value of A is 

€ 

A =
c
2
1− c   (3.1) 

 
Editor’s Note: We let A be variable and expressed A2 as a function, say g, of a, using 
Heron’s formula: 
 



  A2 = g(a) = (1-c)(1-a)(1-(2-a-c)) 
    = (1-c)(1-a)(-1+a+c) 
    = (1-c)(-1+c+a(2-c)-a2) 
 
Now, c is a constant, so this is a quadratic in a. Using either the theory of quadratic 

functions or calculus, we find that the maximum value of g is at 
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a =
2 − c
2

.  And hence 

the maximum value produced by g is 
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Since g’s outputs are the values of A2, the maximum value for A is 
 

! 

c
2
1" c . 

 
(Figure 3.)  Insert Figure 3 around here.  Therefore all triangles s = 1 are represented by 
a point (c 0, A0) in the first quadrant of the (c, A)-plane that lie in the region 

€ 

ℜ  on or 
under the boundary curve (3.1). 
 The evil cubic has a pretty interpretation in this picture:  if a horizontal line cuts the 
boundary curve at (r0, A0), (r1, A0), then r0, r1 are the two roots of the evil cubic f(c) = -c3 
+ c2 – 4A0

2. 
 
Editor’s Note: This took awhile to figure out, and we’re not sure why. Suppose we fix a 
value for A, say A0, and suppose r is a value of c on the boundary of the curve  

€ 

A =
c
2
1− c  

so that 

€ 

A0 =
r
2
1− r  

Square both sides and simplify to obtain: 

€ 

4A0
2 = r2 − r3  

So, r is a root of the equation that defines the evil cubic: 

€ 

0 = −4A0
2 + r2 − r3. 

 
Thus each point on the horizontal line inside 

€ 

ℜ corresponds to a triangle with fixed area 
and s = 1. 
 
Exercise 2:   (i)  Which point in this region corresponds to the unique equilateral triangle 
with s = 1? 

(ii) In Figure 3, find the coordinates of point C, given c0 and A0. 
 

 Using Geometer’s Sketchpad, we noticed that as we move along a horizontal line in 
our region, each non-isosceles triangle appears three times, as each side of a triangle can 



be considered to be the “c” side, the side on the x-axis . (Figure 4.)  Insert Figure 4 
around here.  For example, the longest side of the three congruent triangles in Figure 4 
occurs once on the x-axis, once as the left side, and once as the right side.  The “side of a 
fixed triangle which gets to be c” changes when either c = a or c = b (why?), which by 
Heron’s formula occurs when 

€ 

A = (1− c) 2c −1. (3.2) 
 

Editor’s Note: The sidelengths are a, c, and 2－a－c. The area is given by 

€ 

A2 = (1− c)(1− a)(2 − a − c)      (*) 
Two sides are congruent if 

a = c   or 
a = 2 － a － c    or 
c = 2 － a － c 

that is, if 
a = c   or 

€ 

a =
2 − c
2

or 

a = 2 － 2c 
In each of these three cases, substitute the expression for a into (*) and simplify. 
 
Graphing (3.2) on the same plane as (3.1) divides ℜ into three regions I, II, II.  (Figure 
5.)  Insert Figure 5 around here.  Note that all isosceles triangles correspond to points on 
the graph of either (3.1) or (3.2). 
 For each region, there is a one-to-one correspondence between points of the region 
(including the boundary curves) and triangles with s = 1.  In particular, no two points of a 
fixed region correspond to congruent or even similar triangles. Mathematicians would 
call any of I, II or III a moduli space of triangles, as the set of all points in the region 
correspond in a one-to-one way to the set of all triangles up to scaling. It may seem that 
any of the three regions is as good as any other, but Exercise 3(ii) below shows this isn’t 
the case.  
 
Exercise 3: (i) Take a vertical line lying inside the region ℜ. Show that the corresponding 
set of triangles with A = (c, 0), B = (0, 0) as in Figure 3 have their third vertices C all 
lying on a common ellipse.  
(ii) Find the curve in region I that corresponds to all right triangles with s = 1.  Do the 
same for regions II, III. Which moduli space do you prefer?  
 
Editor’s Note: Suppose the legs of the triangle have lengths a and c, and express the area 

in terms of c, so that we are working in region I. Then the area is 

€ 

A =
1
2
ac , and 

Pythagoras gives the hypotenuse as 

€ 

a2 + c 2 .  But the parameter is 2, so 

€ 

a2 + c 2 = 2 − (a + c) 
Square both sides and solve for a: 



€ 

a =
2(c −1)
c − 2

 

so  

€ 

A =
1
2
ac =

c 2 − c
c − 2

 

Graph this in region I.  Regions II and III are handled similarly, with a or the hypotenuse 
as base.  You might want to use a CAS, as some calculations get quite messy. 
 (iii) Another choice of moduli space for triangles with s = 1 is the set {(a, b) : a+b>1, a< 
2, b <2}, where a, b represent two sides of a triangle (and the third side is c = 2 − a − b). 
Use Geometer’s Sketchpad to draw the set of all triangles of fixed area A in this moduli 
space. This should convince you that different moduli spaces are better for different 
questions about triangles. 
 

 
4. FROM GEOMETRY TO NUMBER THEORY 

 
The right triangles with side lengths (3, 4, 5), (5, 12, 13), etc. are easy to work with, in 
that they have integer sides and integer areas. When we move on to teach the laws of 
cosine and sine, it is harder to find Heron triangles, i.e. triangles with integer sides and 
areas. In this section, we’ll go over a procedure to produce all Heron triangles, and show 
how this number theory problem fits with our moduli space picture. 
 
It’s well known that primitive Pythagorean triples (i.e. Heron right triangles whose sides 
have no common factor greater than one) are given by  

(m2 − n2, 2mn, m2 + n2 ) 
for m, n relatively prime integers and at least one of m, n even, up to switching the first 
two terms.  Interestingly, all of these triangles have unique ratios A/s2, a good exercise 
for the reader to prove.  Note that this ratio is scale-free, i.e. the same for similar 
triangles, and so is a well defined function on the moduli space. To put these in our 
moduli space, the s = 1 scaled versions are 
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m2 − n2

m(m + n)
, 2mn
m(n + m)

, m
2 + n2

m(n + m)
⎛ 
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⎜ 
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with areas Am,n
 = 

€ 

n(m − n)
m(m + n)

.  If you did the Exercise 3(ii), you can find these points in 

(your choice of) the moduli space. 
 
Non-right Heron triangles with sides (a, b, c) scale down into our space by  

€ 

a
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2
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a + b + c
2
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a + b + c
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For example, (20, 13, 11) has an area of 66, so the s = 1 version is (20/22, 13/22, 11/22). 
 
Note that the scaled versions of Heron triangles have rational sides and area.  This is no 
big deal, as any triangle with rational sides and area can be scaled up to a Heron triangle.  



From now on, a triangle with rational sides and area will be called a rational Heron 
triangle. 
 Here is a construction of all rational Heron triangles, and hence all Heron triangles.  
Start with the unit circle x2 + y2 = 1.  Draw the line from (0, 1) to (t, 0) (where t > 1). It 

hits the unit circle at 
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2t
t 2 +1

, t
2 −1
t 2 +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , so this point has rational coordinates precisely if t ∈ 

Q (Q being the set of all rational numbers).  Let ψ be the corresponding angle, so 

€ 

cos(ψ) =
2t
t 2 +1

, 

€ 

sin(ψ) =
t 2 −1
t 2 +1

.  (Figure 6.)   Insert Figure 6 around here.  We’ll write 

“ψ ∈ Q” if  t ∈ Q (equivalently, if cos(ψ), sin(ψ) ∈ Q), and call ψ  “essentially rational.” 
 
Consider ∆ABC with sides a, b, c and fixed angle ψ at vertex B.  (We will use the 
standard confusing notation that A refers both to a vertex of the triangle and its area, but 
the meaning of A should be clear from context!) By the Law of Cosines, using 

€ 

b = 2 − (a + c) , then      

€ 

a =
2(1− c)

2 − c(1+ cos(ψ))
 

 
Editor’s Note: Label the triangle as the authors describe, with side a opposite ∠A and so 
on with ψ at B.  Since a + b + c = 2, then b= 2 – (a + c).  The Law of Cosines says that 
 

(2 – (a + c))2 = a2 + c2 – 2ac cosψ 
 
Expand and simplify to obtain 

€ 

a =
2(1− c)

2 − c(cosψ +1)
 

 
and the area A of  ∆ABC can be found using 
 

€ 

A =
1
2
ac sin(ψ) =

c(1− c)sin(ψ)
2 − c(1+ cos(ψ))

.  (4.1) 

 
 
Therefore 

€ 

c,ψ ∈ Q ⇒ a∈ Q ⇒ A,  b∈ Q ⇒ΔABC is Rational Heron. 
Since we want to work in the (c, A)-plane, fix an essentially rational angle ψ (or 
equivalently, fix a rational t).  Then 

€ 

Aψ (c) =
c(1− c)sin(ψ)
2 − c(1+ cos(ψ))

 

is the area of a triangle with base c and base angle ψ.  (If we let ψ be arbitrary, the curves 
Aψ(c) sweep out the moduli space.)  By calculus, Aψ(c) is increasing for c near 0.  So if c  
runs over an infinite number of small rational numbers c1, c2, … near zero, we get an 
infinite number of rational Heron triangles with distinct areas corresponding to the points 



(c1, Aψ(c1)), (c2, Aψ(c2)), … on the graph of Aψ . 
 
Exercise 4: (i)  Pick 

€ 

c ∈ Q∩ (0,1) .  Show that there exist an infinite number of rational 
Heron triangles on the vertical line over c in the moduli space.   
 (ii) Show that the set of Heron triangles is dense in the moduli space: i.e. show that 
for any circle of radius 

€ 

ε > 0  with center (c0 , A0 ) in the moduli space, there exists a 
Heron triangle corresponding to (c, A) such that (c, A) is within the circle.  Hint: Let c in 
4(i) range over all elements of 

€ 

Q∩ (0,1) . 
 
We can now produce many interesting sequences of rational Heron triangles.  For 
example, take e.g. t = 2, so cos(ψ) = 4/5, sin(ψ) = 3/5.  Using (4.1), we get the sequence 
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(a(c),b(c),c) =
10(1− c)
10 − 9c

,−10 +18c − 9c 2

10 − 9c
,c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (4.2) 

which is equivalent to the Heron triangles (10(-1+c), 10-18c + 9c2, c(-10+9c)), c 

€ 

∈  Z+ (Z 
is the set of all positive integers), after clearing denominators.  These triangles 
correspond to the points on the curve Aψ(c) in the moduli space, where ψ = cos-1(4/5). 
 
For t = 2, c = ½ we get the Heron triangle (20, 13, 11) after scaling.  Other Heron 
triangles with the same angle at one vertex are obtained by listing a few rationals close to 
c = 1/2:  e.g. c1 = ½, c2 = 7/16, c3 = 17/32, ….  After clearing denominators, we get an 
infinite sequence of rational Heron triangles 
 

(20, 13, 11), (1440, 985, 679), (4800, 3049, 2839), … 
 
with corresponding areas of 66, 313698, 4088160, …. These triangles are “almost 
similar” to each other. 
 
Exercise 5:  Show that the set of triangles with fixed angle α at the C vertex correspond 

to the points on the line 
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A = (1− c)tan α
2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  in the moduli space.  If 
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tan α
2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  is rational, will 

a and b always be rational, thus producing a rational Heron triangle? 
 
To get other almost similar rational Heron triangles, we could fix c and let t vary, but for 
fun let’s have both c and t vary.  Pick e.g. t = 2.1, close to the original value of t, so the 
corresponding angle ψ has cos(ψ) = 4.2/5.41, sin(ψ) = 3.41/5.41.  This gives a second 
infinite sequence of rational Heron triangles 
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10.82(1− c)
10.82 − 9.61c

,−10.82 +19.22c − 9.61c 2

10.82 − 9.61c
,c

⎛ 
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⎜ 
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⎟  (4.3) 

 
(cf. (4.2)).  We can produce impressive Heron triangles by choosing a more complicated 
c≈ 1/2 at random, say c = 1623/3410.  Clearing denominators, we get the first Heron 
triangle in the sequence (4.3):  (6593350940, 4475827709, 3456855291). A mental check 
shows this has area 7183142964957817770 and its sides satisfy a2+c2-2ac(4.2/5.41) = b2.  
 



Editor’s Note: “Mental Check” indeed. 
 
After rescaling to s = 1, this triangle corresponds to a point in the moduli space very close 
to the point for the scaled (20, 13, 11) triangle, so these two triangles are almost similar. 
 

5. VAN LUIJK’S THEOREM 
 
Finding as many rational Heron triangles as you want on vertical lines in the moduli 
space is easy (go back to Exercise 4(i)—Hint:  fix c and vary t). In contrast, finding 
rational Heron triangles on horizontal lines in the moduli space turns out to be a cutting 
edge research problem.  It was proved only in 2000 that there exists an infinite number of 
horizontal lines with two Heron triangles.  The work has been expanded on since then.  
Here is a fairly recent preprint: 
 
Theorem: (van Luijk, www.arxiv.org/math.AG/0411606, to appear in J. Number  
Theory) There exist infinitely many rational numbers A1, A2, A3, … such that for each Ai, 
there exists an infinite number of non-similar Heron triangles 

€ 

ai1,ai2,ai3( ) , 

€ 

bi1,bi2,bi3( ) , 

€ 

ci1,ci2,ci3( ) , …      (5.1) 
such that all triangles in (5.1) have the same scale-free ratio Ai/(si)2 ≠ Aj/(sj)2 for i ≠ j. 
 
Said more succinctly, van Luijk’s theorem claims there are infinitely many rational Heron 
points (not just two) along any horizontal line (of rational A) in the moduli space.  Insert 
Figure 7 around here.  Van Luijk’s 2004 proof is very sophisticated, using arithmetic 
algebraic geometry, in particular the theory of rational points on elliptic curves. So the 
number theory for horizontal lines in the moduli space is much more complicated than for 
vertical lines.  
 
How hard can van Luijk’s theorem be? Let’s take a shot at the two-rational-Heron-
triangles-per-line problem to see what we’re up against. 
 
Example:  Say ψ = π/2.  One triangle on Aπ/2 (c) is c=3/5, A=6/7, which corresponds to the 
(scaled down) (20, 21, 29) right triangle.  Let’s look for another triangle with an area of 
6/7.  We’ll need a new c and a new ψ.  Using the equation from section 4, 

€ 

Aψ (c) =
c(1− c)sinψ
2 − c(1+ cosψ)

=
6
7

. 

Substituting in the “t” formulas for sinψ and cosψ we end up with the miserable equation 
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6
7

=
c(1− c) t

2 −1
t 2 +1

2 − c 1+
2t
t 2 +1
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. 

If we solve for this for c, the quadratic formula leaves us with an unpleasant discriminant 
in t.  Best of luck finding a t to make the discriminant a perfect square.  Alternatively, if 
we solve for t, we need to find the right t to make an ugly quartic work out nicely.  There 
is no guarantee that the solution to either approach will yield the rational result desired.   
 



While we are struggling with finding just two unique rational Heron triangles for one 
rational area, van Luijk found a way to generate infinitely many non-similar rational 
Heron triangles for any rational area in the moduli space. 
 
So, van Luijk’s proof of his theorem is pretty complicated.  We wonder if there might be 
an easier approach, but we haven’t found it yet.  
 

6. CONCLUSION 
 

Too often the high school math curriculum is compartmentalized into geometry, algebra 
and number sense units. In this case, starting with an innocent question in high school 
geometry, we were led to a year-long discussion of algebra and moduli spaces (the 
geometry of the set of all triangles, or the “geometry of geometry”), and to related 
number theory questions. In each approach, we eventually got stuck (we can’t solve the 
evil cubic explicitly, we can’t reprove van Luijk’s theorem), but we discovered a 
tremendous amount of new mathematics along the way.  
 
There’s a lot more left to uncover. For example, are there nice choices for A such that the 
evil cubic has three rational roots? Using t as a parameter/slider, what triangles do you 
get as you climb a vertical line in the moduli space? Use the Geometer’s Sketchpad files 
(see footnote 1) to investigate other lines and curves in the moduli space, and let us know 
what you discover.  
 
Final Note:  This tour de force by Rosenberg, Spillane, and Wulf is a delightful blend of 
algebra, geometry, and abstraction. We’d welcome submissions that build on the ideas in 
this paper. The authors suggest some directions in their conclusion. Here are some others: 
 

• Many optimization problems can be solved without calculus. The geometric-
arithmetic mean inequality is a useful tool for such purposes. The classic 
“Maxima and Minima Without Calculus” by Ivan Niven (Dolciani 
Mathematical Expositions 6, Mathematical Association of America, 2005) 
show just how far these techniques can take you. We’d be very interested in 
articles around this theme. 

• There have been several articles in this journal that have dealt with Heron 
triangles. See for example, the article by Bowen Kerins and the High School 
Teachers Program Group of the Park City Mathematics Institute. “Gauss, 
Pythagoras, and Heron” in the May 2003 issue of MT. There’s even a 
connection between Heron triangles and the arithmetic of complex numbers. 
We’re eager to receive more articles on Heron Triangles. 

• This whole idea of moduli space is intriguing. Where else in high school 
mathematics can you find interesting examples? For example, in “Regression 
Lines Through Conic Sections” (MT, December, 2003) we parameterize lines 
that are “equally as bad” with respect to a set of data by their slope and y-
intercept.  

• The authors also sent the following generalization for 3-D application of 
rational points in stereographic projections:  



 
Geometric Digression:  There is an important 3D analogue of Figure 6. Think 
of the unit sphere as the earth’s surface, and let P be a point on the earth which 
is not the north pole. Draw a line lP from the north pole through P. Call G the 
intersection of lP with the xy-plane. Then the function P → G produces a map 
of the earth minus the north pole. This function, called stereographic 
projection, still takes points with rational coordinates to points with rational 
coordinates; this is a good exercise. A new feature in 3D is that stereographic 
projection preserves angles. This is important for sailors, who can use the map 
to chart the direction of their course, although it obviously distorts distances. 
This tradeoff is inevitable: Gauss proved that there is no distance and angle 
preserving map from any piece of the sphere to any piece of the plane.  
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