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PROOF

This discussion addresses several different aspects of proof and includes many links to

additional readings. You may want to jump to the activities, try some out, and then double back

to the readings once you have had a chance to reflect on how you approach proofs. You can use

the table of contents below to navigate around this chapter:
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WHAT IS A PROOF?

In everyday life, we frequently reach conclusions based on anecdotal evidence. This habit also

guides our work in the more abstract realm of mathematics, but mathematics requires us to adopt

a greater level of skepticism. Examples�no matter how many�are never a proof of a claim that

covers an infinite number of instances.

A proof is a logical argument that establishes the truth of a statement. The argument derives

its conclusions from the premises of the statement, other theorems, definitions, and, ultimately,

the postulates of the mathematical system in which the claim is based. By logical, we mean that

each step in the argument is justified by earlier steps. That is, that all of the premises of each

http://www2.edc.org/makingmath/handbook/teacher/definitions/definitions.asp
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deduction are already established or given. In practice, proofs may involve diagrams that clarify,

words that narrate and explain, symbolic statements, or even a computer program (as was the

case for the Four Color Theorem (MacTutor)). The level of detail in a proof varies with the

author and the audience. Many proofs leave out calculations or explanations that are considered

obvious, manageable for the reader to supply, or which are cut to save space or to make the main

thread of a proof more readable. In other words, often the overarching objective is the

presentation of a convincing narrative.

Postulates are a necessary part of mathematics. We cannot prove any statement if we do not

have a starting point. Since we base each claim on other claims, we need a property, stated as a

postulate, that we agree to leave unproven. The absence of such starting points would force us

into an endless circle of justifications. Similarly, we need to accept certain terms (e.g., �point� or

�set�) as undefined in order to avoid circularity (see Writing Definitions). In general, however,

proofs use justifications many steps removed from the postulates.

Before the nineteenth century, postulates (or axioms) were accepted as true but regarded as

self-evidently so. Mathematicians tried to choose statements that seemed irrefutably true�an

obvious consequence of our physical world or number system. Now, when mathematicians

create new axiomatic systems, they are more concerned that their choices be interesting (in terms

of the mathematics to which they lead), logically independent (not redundant or derivable from

one another), and internally consistent (theorems which can be proven from the postulates do not

contradict each other). (Download Axiomatic Systems (Lee) and see sections 6.1, 8.1, and 8.4 in

book 3b of Math Connections (Berlinghoff) for further explanations, activities, and problem sets

on axiomatic systems, consistency, and independence). For example, non-Euclidean geometries

have been shown to be as consistent as their Euclidean cousin. The equivalence between these

systems does not mean that they are free of contradictions, only that each is as dependable as the

other. This modern approach to axiomatic systems means that we consider statements to be true

only in the context of a particular set of postulates.

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_four_colour_theorem.html
http://www2.edc.org/makingmath/handbook/teacher/Definitions/Definitions.asp#WritingDefinitions
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WHY DO WE PROVE?

To Establish a Fact with Certainty

There are many possible motives for trying to prove a conjecture. The most basic one is to

find out if what one thinks is true is actually true. Students are used to us asking them to prove

claims that we already know to be true. When students investigate their own research questions,

their efforts do not come with a similar guarantee. Their conjecture may not be true or the

methods needed may not be accessible. However, the only way that they can be sure that their

conjecture is valid, that they have in fact solved a problem, is to come up with a proof.

Students� confidence in a fact comes from many sources. At times, they appeal to an

authoritative source as evidence for a claim: �it was in the text� or �Ms. Noether told us this last

year.� It has been my experience that such justifications carry little practical persuasive value.

For example, a class discussed the irrationality of π and proofs of that fact, yet an essay

assignment on a proposal to obtain the complete decimal expansion of π still generated student

comments such as, �if π eventually turns out not to be irrational then that project would be

interesting.� Thus, an authoritative claim of proof is only good until some other authority shows

otherwise. Mathematical truths do tend to stand the test of time. When students create a proof

themselves, they are less likely to think of the result as ephemeral. A proof convinces the prover

herself more effectively than it might if generated by someone else.

To Gain Understanding

"I would be grateful if anyone who has understood this

demonstration would explain it to me."

� Fields Medal winner Pierre Deligne, regarding a theorem that he

proved using methods that did not provide insight into the

question.

There are proofs that simply prove and those that also illuminate. As in the case of the

Deligne quote above, certain proofs may leave one unclear about why a result is true but still

confident that it is. Proofs with some explanatory value tend to be more satisfying and appealing.

Beyond our interest in understanding a given problem, our work on a proof may produce

techniques and understandings that we can apply to broader questions. Even if a proof of a



Page 4 Proof.doc

© Education Development Center, Inc. 2002 Making Mathematics: August 8, 2002

theorem already exists, an alternative proof may reveal new relationships between mathematical

ideas. Thus, proof is not just a source of validation, but an essential research technique in

mathematics.

If our primary consideration for attempting a proof is to gain insight, we may choose methods

and types of representations that are more likely to support that objective. For example, the

theorem that the midpoints of any quadrilateral are the vertices of a parallelogram can be proven

algebraically using coordinates or synthetically (figure 1).
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Figure 1. The diagrams for coordinate and synthetic proofs

A synthetic proof rests on the fact that the segment connecting the midpoints of two sides of a

triangle, the midline, is parallel to the third side. In quadrilateral ABCD (right side of figure 1),

the midlines of triangles ABD and CBD are both parallel to the quadrilateral diagonal BD and,

therefore, to each other. It is clear that if point C were to move, the midline for triangle BCD

would remain parallel to both BD and the midline of triangle ABD. To complete the proof, one

would consider the midlines of triangle ADC and triangle ABC as well. The coordinate proof

uses the coordinates of the midpoints to show that the slopes of opposite midlines are equal.

For many people, the synthetic proof is more revealing about why any asymmetries of the

original quadrilateral do not alter the properties of the inner parallelogram. It also illustrates how

a proof can be a research tool by answering other questions, such as �when will the inner

quadrilateral be a rhombus?� Because midlines are one half the length of the parallel side, the

inner parallelogram will have equal sides only when the diagonals of the original quadrilateral

are congruent.
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Sometimes our inability to develop a proof is revealing and leads us to reconsider our

examples or intuitions. After countless attempts to prove that Euclid�s fifth postulate (the parallel

postulate) was dependent on the other four, mathematicians in the nineteenth century finally

asked what the consequences would be if the postulate were independent. The doubts that arose

from the failure to obtain a proof led to the creation of non-Euclidean geometries.

To Communicate an Ideas to Others

Often, mathematicians (of both the student and adult variety) have a strong conviction that a

conjecture is true. Their belief may stem from an informal explanation or some convincing cases.

They do not harbor any internal doubt, but there is a broader audience that retains some

skepticism. A proof allows the mathematician to convince others of the correctness of their idea.

A Making Mathematics teacher, in the midst of doing research with colleagues, shared his

feelings about proof:

Just so I can get it off of my chest, I hate doing proofs with a
passion. It�s the part of mathematics that I grew to hate when I was
an undergraduate, and it�s what so many of my former students
come back and tell me turned them off to continuing on as a math
major. I remember having a professor who held us responsible for
every proof he did in class. We�d probably have a dozen or more to
know for each exam, in addition to understanding the material
itself. I can remember just memorizing the steps, because the
approaches were so bizarre that no �normal person� would ever
think of them in a million years (yes, I know I'm stereotyping).

This teacher�s frustrations with proofs involved having to memorize arguments that were neither

revealing (and therefore, not entirely convincing) nor sufficiently transparent about the process

by which they were created. Yet, this same teacher, on encountering collegial doubts about his

conjecture concerning Pascal�s triangle wrote, �Well, I decided to try and convince you all that

the percentage of odds does in fact approach zero as the triangle grows by proving it.� His efforts

over several days produced a compelling proof. His conflicting attitudes and actions highlight the

distinction between proofs as exercises and proofs as tools for communication and validation. A

genuine audience can make an odious task palatable.
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For the Challenge

Difficult tasks can be enjoyable. Many mathematical problems are not of profound

significance, yet their resolution provides the person who solves them with considerable

gratification. Such success can provide a boost in self-esteem and mathematical confidence. The

process of surmounting hurdles to a proof can have all of the thrill of a good mystery. Students

(and adults) are justifiably excited when they solve a problem unlike any they have previously

encountered and which no one else may have ever unraveled.

To Create Something Beautiful

The more students engage in mathematics research, the more they develop their own aesthetic

for mathematical problems and methods. The development of a proof that possesses elegance,

surprises us, or provides new insight is a creative act. It is rewarding to work hard to make a

discovery or develop a proof that is appealing. The mathematician Paul Erdös spoke of proofs

that were �straight from the Book��the Book being God�s collection of all the perfect proofs for

every theorem. Although Erdös did not actually believe in God, he did believe that there were

beautiful truths waiting to be uncovered (Hoffman).

To Construct a Larger Mathematical Theory

We rarely consider mathematical ideas in a vacuum. Our desire to advance a broader

mathematical problem is often a source of motivation when we attempt a proof. For example, a

number of mathematicians spent many years attempting to characterize a class of objects known

as simple groups (Horgan). Their cumulative efforts resulted in thousands of pages of proofs that

together accomplished the task. Many of these proofs, significant in their own right, were of even

greater value because of their contribution to the larger understanding that the mathematics

community sought.

For a further discussion of the role of proof in school curricula, see Do We Need Proof in

School Mathematics? (Schoenfeld, 1994).

http://www-gse.berkeley.edu/Faculty/aschoenfeld/WhatDoWeKnow/What_Do_we_know02.html#Heading4
http://www-gse.berkeley.edu/Faculty/aschoenfeld/WhatDoWeKnow/What_Do_we_know02.html#Heading4
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WHAT DO WE PROVE?

We can prove many different types of claims.

•  We can show that an object or a set of objects possesses some particular property. For

example, we can prove that all isosceles trapezoids have a circumcircle or that all rational

numbers have finite or repeating decimal representations.

•  We can prove that a particular algorithm will construct objects with a desired property. For

example, we can prove that a geometric construction does produce a specific shape or that

the formula (n2 � m2, 2mn, n2 + m2) will always produce Pythagorean triples for counting

numbers m and n with n > m (see PythagoreanTriples, Bogomolny).

•  More surprisingly, we can also prove that objects with certain properties exist without having

to produce the objects themselves. Euclid�s proof of the infinitude of the prime numbers is

one such existence proof (see Infinitude of Primes, Bogomolny). Euclid showed that, given

any finite set of primes, there must always be another prime not within the set, but his

method does not produce that next number. Likewise, we can count the number of trains of

length n that can be made from cars of different lengths without showing how to generate the

arrangements of cars themselves (see the teaching notes for the trains project for examples of

both constructive and non-constructive proofs of the number of trains n units long).

•  When we cannot determine the precise solution to a problem, we may seek to estimate it or

prove that there are boundaries to the answer. If a function cannot be determined explicitly,

we can try to approximate its behavior asymptotically. The project Set considers the

maximum number of three-card Sets possible in a carefully constructed collection of n cards

(see the teaching notes). We do not know the exact maximum for n even as small as 12, but

we have established upper and lower limits. The distribution of primes is a central question in

number theory. The function P(n) that gives the number of primes less than or equal to n can

be found by identifying all primes up to n. Beyond the bounds of calculation, it can still be

accurately estimated using the prime number theorem (see Prime Theorem of the Century,

Peterson).

•  We can show that two different problems or systems are related to each other. For example,

in 1868, Eugenio Beltrami demonstrated that Lobachevskian geometry could be modeled

http://www.cut-the-knot.com/pythagoras/pythTriple.html
http://www.cut-the-knot.com/proofs/primes.html
http://www2.edc.org/makingmath/mathprojects/trains/trains_teach.asp
http://www2.edc.org/makingmath/mathprojects/trains/trains.asp
http://www2.edc.org/makingmath/mathprojects/gameOfSet/Set.asp
http://www2.edc.org/makingmath/mathprojects/gameOfSet/Set_teach.asp
http://www.maa.org/mathland/mathland_12_23.html
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within Euclidean geometry and that the two were, therefore, equivalently consistent or

inconsistent (see Non-Euclidean Geometries, Models, Bogomolny).

•  We can prove the impossibility of some type of claim. Some of the most important of all

such proofs are Gödel�s Incompleteness Theorems. These theorems revealed that any

axiomatic system that includes the properties of arithmetic would have statements that cannot

be proven within the system. That is, it is impossible to create a complete axiomatic system

that is complex enough to support most mathematical work (see Gödel�s Theorems (PRIME),

The Limits of Mathematics (Peterson) and The Berry Paradox (Chaitin)).

WHEN SHOULD STUDENTS PROVE?

In general, students should attempt a proof in response to one of the motivations listed in the

Why Do We Prove? section. If students only attempt proofs as exercises, they come to see proof

as an after-the-fact verification of what someone else already knows�it becomes disconnected

from the process of acquiring new knowledge. However, students derive considerable

satisfaction from proving a claim that has arisen from their own investigations.

If students in a class disagree about a conjecture, then that is a good time for the individuals

who support it to look for a proof in order to convince the doubters. If a student seems

particularly taken with a problem and starts to feel some sense of ownership for the idea, then

she should attempt a proof in response to her own mathematical tastes. If two student claims

have a connection, the students may want to prove the one that is a prerequisite for proving the

other.

A focus on formal proof should grow gradually. When we emphasize formal proof too soon

and too often, before students have developed a rich repertoire of proof techniques and

understanding, their frustration with, and subsequent dislike of, the challenge can become an

obstacle to further progress. It is always appropriate to ask students what led them to their

conjectures and why they think they are true. We begin by asking for reasons, not formal proofs,

and establish the expectation that explanations should be possible and are important. Note that

we ask �why� regardless of the correctness of a claim and not just for false propositions. As we

highlight that they always should be interested in why an idea is true, students begin to develop

the habit of asking �why?� themselves.

http://www.cut-the-knot.com/triangle/pythpar/Model.html
http://www.mathacademy.com/pr/prime/articles/godel/
http://www.maa.org/mathland/mathtrek_2_23_98.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/unm2.html
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A good time to ask a student to write out a proof is when you think that she has already

grasped the connections within a problem that are essential to the development of a more formal

argument. This timing will not only lead to an appreciation for how proofs can arise organically

during research, it will also lead to some confidence regarding the creation of proofs.

It is not necessary for students to prove all of their claims just for the sake of thoroughness.

Published articles often prove the hard parts and leave the easier steps �for the reader.� In

contrast, a student should begin by trying to prove her simpler assertions (although it may be

difficult to figure out how hard a problem will be in advance). When students have conjectures,

label them with the students� names and post them in the class as a list of open problems. Then,

as students grow in the rigor and complexity of their proofs, they can return to questions that

have become accessible.

When a student does create a proof, have her describe it to a peer, give an oral presentation to

the class, or write up her thinking and hand it out for peer review. The students should come to

see themselves as each other's editorial board, as a group of collaborating mathematicians. They

should not be satisfied if their classmates do not understand their argument. It is a long struggle

getting to the point where we can write intelligible yet efficient mathematics. One of my students

once presented proofs of a theorem four times before the class gave him the �official Q.E.D�.

Each of the first three presentations generated questions that helped him to refine his thinking,

his definitions, and his use of symbols.

HOW DO WE PROVE?

General Approaches

Learning to prove conjectures is a lifelong process, but there are some basic considerations

and methods that students should focus on as they begin to develop rigorous arguments. The first

concern is that they be clear about what they are trying to prove�that they unambiguously

identify the premises and the conclusions of their claim (see Conditional Statements in

Conjectures).

The next goal should be to try to understand some of the connections that explain why the

conjecture might be true. As we study examples or manipulate symbolic representations, we gain

understanding that may lead to a proof. Because understanding and proof often evolve together,

if a student wants to prove a conjecture that a classmate or teacher has presented, she should

http://www2.edc.org/makingmath/handbook/teacher/conjectures/conjectures.asp#ConditionalStatements
http://www2.edc.org/makingmath/handbook/teacher/conjectures/conjectures.asp
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consider undertaking an investigation that will help her recreate the discovery of the result. This

process may provide insight into how a proof might be produced. (See Schoenfeld (1992) for

more discussion of problem solving and proof.)

Often, a proof involves a large number of steps that, in our thinking about the problem, we

organize into a smaller number of sequences of related steps (similar to when computer

programmers turn a number of commands into a single procedure). This �chunking� of many

steps into one line of reasoning makes it possible to grasp the logic of a complicated proof. It

also helps us to create an outline of a potential proof before we have managed to fill in all of the

needed connections (see Proof Pending a Lemma below).

When we create a proof, we seek to build a bridge between our conjecture�s premise and its

conclusion. The information in the premise will have a number of possible consequences that we

can use. Similarly, we try to identify the many conditions that would suffice to prove our

conclusion. For example, if we know that a number is prime, there are numerous properties of

prime numbers that we might bring into play. If we seek to show that two segments are

congruent, we might first show that they are corresponding sides of congruent figures, that they

are both congruent to some third segment, or that it is impossible for one to be either shorter or

longer than the other. Once we have considered the possibilities that stem from our premises and

lead to our conclusions, we have shortened the length of our proof from �if premise, then

conclusion� to �if consequence-of-premise, then conditions-leading-to-conclusion� (figure 2). A

main task comes in trying to determine if any of these new statements (one for each combination

of consequence and condition) is likely to be easier to prove than the original.

ConclusionsPremises

Figure 2. Searching for a path to a proof
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Some conjecture�s conclusions involve more than one claim. Recognizing all of these

requirements can be a challenge. For example, to show that the formula (n2 � m2, 2mn, n2 + m2)

is a complete solution to the problem of identifying Pythagorean triples, we need to show both

that it always generates such triples and that no triples are missed by the formula. Cases such as

this, in which we need to demonstrate both a claim and its converse, are common.

Sometimes, two approaches to proving a result will differ in both their method and what they

teach us. A student working on the Amida-kuji project defined a minimal configuration of

horizontal rungs as one that results in a particular rearrangement of the numbers using the fewest

rungs possible. He then conjectured that the number of distinct minimal configurations would

always be greatest for the reversal of n items (1 2 3 � n goes to n � 3 2 1) than for any other

permutation of the n values. Does this student need to find and prove a formula for the number of

minimal configurations for each permutation? Can he somehow compare the number of minimal

configurations without actually counting them explicitly and show that one set is larger? These

two approaches might both prove his claim, but they require distinctly different findings along

the way.

Just as we make decisions about the sequencing of ideas that we use to construct a proof, so,

too, do we choose from among an array of different technical tools. In the quadrilateral proof

above, we represented the same setting using coordinates as well as synthetically. We transform

our mathematical ideas into diagrams, numeric examples, symbolic statements, and words.

Within those broad categories, there are numerous ways of representing information and

relationships and each representation offers the possibility of new understandings.

We may further our understanding of a problem by looking at a simpler version of it. We can

apply this same approach to proof: prove a special case or subset of cases before taking on the

entire problem. For example, a student working on the Raw Recruits project first proved

theorems about the cases with one or two misaligned recruits and then worked up to the general

solution. Choosing the right simplification of a problem is important. Had the student focused on

a fixed number of total recruits rather than of misaligned ones, she might not have been as

successful finding patterns.

http://www2.edc.org/makingmath/mathtools/conditional/conditional.asp
http://www2.edc.org/makingmath/mathprojects/amidakuji/Links/amidakuji_lnk_1.asp
http://www2.edc.org/makingmath/handbook/teacher/representations/representations.asp
http://www2.edc.org/makingmath/handbook/teacher/representations/representations.asp
http://www2.edc.org/makingmath/mathprojects/recruits/Links/recruits_lnk_1.asp
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Proof methods

The list of proof techniques is endless. Providing students with a repertoire of a few powerful,

general methods can give them the tools that they need to get started proving their conjectures.

These first techniques also whet students� appetites to learn more. Each student�s own research

and reading of mathematics articles (see Reading Technical Literature in Getting Information)

will provide additional models to consider when constructing a proof. When students begin work

within a new mathematical domain, they will need to learn about the tools (representations,

techniques, powerful theorems) common to the problems that they are studying.

It is not possible to give ironclad rules for when a given approach to proof will prove fruitful.

Therefore, in addition to providing guidance (�It might be worthwhile holding one of your

variables constant�), our job mentoring students engaged in proof is to ask questions that will

help them reflect on their thinking. Is planning a part of their process (are they considering

alternative strategies or just plowing ahead with the first approach that occurs to them)? Are they

connecting the steps that they are exploring with the goal that they are trying to reach (can they

explain how their current course of action might produce a useful result)? Are they periodically

revisiting the terms of their conjecture to see that they have not drifted off course in their

thinking? See Getting Stuck, Getting Unstuck�Coaching and Questioning for further questions.

The most basic approach that students can use to develop understanding and then a proof is to

study specific cases and seek to generalize them. For example, a student was exploring recursive

functions of the form     f n( )= a f n− 1( )+ b. She wanted to find an explicit formula for f and

began by looking at     f n( )= 5 f n− 1( )− 3 with   f 0( )= 1. Her first values:

  f 1()= 2

  f 2( )= 7

  f 3( )= 32

  f 4( )= 157

revealed some patterns, but no breakthrough. She then took an algebraic perspective on the

problem by looking at the form and not the value of the results. She decided to keep her

examples general by not doing the arithmetic at each step:

http://www2.edc.org/makingmath/handbook/teacher/GettingInformation/GettingInformation.asp#ReadingTechnicalLiterature
http://www2.edc.org/makingmath/handbook/teacher/GettingInformation/GettingInformation.asp
http://www2.edc.org/makingmath/handbook/teacher/StuckAndUnstuck/StuckAndUnstuck.asp
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    f 1()   = 5 1()− 3  = 5⋅1− 3

    f 2( )
  
= 5 5 1()− 3( )− 3  = 52 ⋅1− 5⋅ 3− 3

    f 3( )
  
= 5 5 51()− 3( )− 3( )− 3  = 53 ⋅1− 52 ⋅ 3− 5⋅ 3− 3

    f 4( )
  
= 5 5 5 5 1()− 3( )− 3( )− 3( )− 3  = 54 ⋅1− 53 ⋅ 3− 52 ⋅ 3− 5⋅ 3− 3

This form revealed an explicit formula, 
�  
f n( )= 5n ⋅1− 3 5n−1 + 5n−2 +�+ 1( ), which pointed the

way to a general rule for all a, b, and   f 0( ). This example demonstrates why it is sometimes

advantageous not to simplify an expression.

Algebra is a familiar, all-purpose tool that we should encourage students to use more often.

Many students primarily think of variables as specific unknowns and not as placeholders for an

infinite number of examples (see the practice proofs and their solutions for examples of algebraic

expressions used in this manner).

For descriptions of, and exercises using, some of the most common and powerful proof

methods, see the Mathematics Tools on proof:

•  proof by induction

•  proof by contradiction

•  the pigeonhole principle

•  parity in proof

•  invariants

Examples as Disproof and Proof

An example cannot prove an affirmative statement about an infinite class of objects.

However, a single example, called a counterexample, is sufficient to disprove a conjecture and

prove the alternative possibility. For example, we know of many even perfect numbers

(Weisstein). The discovery of a single odd perfect number would be an important proof that such

numbers, conjectured not to exist, are possible.

http://www2.edc.org/makingmath/mathproj.asp#rstool
http://www2.edc.org/makingmath/mathtools/proof/proof.asp
http://www2.edc.org/makingmath/mathtools/induction/induction.asp
http://www2.edc.org/makingmath/mathtools/contradiction/contradiction.asp
http://www2.edc.org/makingmath/mathtools/pigeonhole/pigeonhole.asp
http://www2.edc.org/makingmath/mathtools/parity/parity.asp
http://www2.edc.org/makingmath/handbook/teacher/conjectures/conjectures.asp#Invariants
http://mathworld.wolfram.com/PerfectNumber.html
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Proof By Exhaustion

When a conjecture involves a finite set of objects, we can prove the conjecture true by

showing that it is true for every one of those objects. This exhaustive analysis is sometimes the

only known means for answering a question. It may not be elegant, but it can get the job done if

the number of instances to test is not overwhelmingly large. The mathematicians who proved the

Four Color Theorem (MacTutor) broke the problem into 1476 cases and then programmed a

computer to verify each one. Such proofs are not entirely satisfying because they are less likely

than a proof that covers all cases simultaneously to have explanatory value.

We often break a problem down into categories of instances or cases and not all the way

down to individual instances. For example, a theorem about triangles may require separate

analyses for acute, right, and obtuse triangles. One challenge when proving via a case-by-case

analysis is to have a rigorous means of showing that you have identified all of the different

possible cases.

Proof Pending a Lemma

One of the more exciting experiences in mathematics is the recognition that two ideas are

connected and that the truth of one is dependent on the truth of the other. Often a student will be

working on a proof and discover that they have a line of reasoning that will work if some other

claim is true. Encourage the student to develop their main argument and then return to see if they

can fill in the missing link. A claim that is not a focus of your interest, but which you need for a

larger proof, is called a lemma. As students working on a common problem share their

discoveries through oral and written reports, they may recognize that a fellow researcher has

already proven a needed lemma. Alternatively, they may realize that their conjecture is a

straightforward consequence of a general result that another classmate has proven. We call a

theorem that readily follows from an important result a corollary. These events contribute

enormously to students� understanding of mathematics as a communal activity.

There are many well-known cases of theorems that mathematicians have proven pending

some other result. Of course, that means that they are not actually theorems until the lemma has

been established. What is a theorem in these situations is the connection between two unproven

results. For example, Gerhard Frey proved that if a long-standing problem known as the

Taniyama-Shimura conjecture were true, then Fermat�s Last Theorem (MacTutuor) must be as

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_four_colour_theorem.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Fermat's_last_theorem.html
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well. This connection inspired Andrew Wiles to look for a proof of the Taniyama-Shimura

conjecture.

WHEN IS A PROOF FINISHED?

How do we know that we have proven our conjecture? For starters, we should check the logic

of each claim in our proof. Are the premises already established? Do we use the conclusions to

support a later claim? Do we have a rigorous demonstration that we have covered all cases?

We next need to consider our audience. Is our writing clear enough for someone else to

understand it? Have we taken any details for granted that our readers might need clarified?

Ultimately, the acceptance of a proof is a social process. Do our mathematical peers agree that

we have a successful proof? Although we may be confident in our work, unless others agree, no

one will build upon or disseminate our proof. Our theorem may even be right while our proof is

not. Only when our peers review our reasoning can we be assured that it is clear and does not

suffer from logical gaps or flaws.

If a proof is unclear, mathematical colleagues may not accept it. Their clarifying questions

can help us improve our explanations and repair any errors. On the other hand, mathematical

truth is not democratically determined. We have seen many classes unanimously agree that a

false assertion was true because the students failed to test cases that yielded counterexamples.

Likewise, there have been classes with one voice of reason trying to convince an entire class of

non-believers. The validity of a proof is determined over time�readers need time to think, ask

questions, and judge the thoroughness of an exposition. Students should expect to put their

proofs through the peer review process.

When do peers accept a proof? When they have understood it, tested its claims, and found no

logical errors. When there are no intuitive reasons for doubting the result and it does not

contradict any established theorems. When time has passed and no counterexamples have

emerged. When the author is regarded as capable (�I don�t understand this, but Marge is really

good at math�). Some of these reasons are more important than others, but all have a role in

practice.

See Davis and Hersh�s (1981) The Mathematical Experience for a fine collection of essays on

the nature of proof, on methods of proof, and on important mathematical conjectures and

theorems.
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How to End a Proof

Since one reason we tackle proofs is for the challenge, we are entitled to a modest

�celebration� when a proof is completed. The nicest honor is to name a theorem after the student

or students who proved it. If you dub proofs after their creators (e.g., Laura�s Lemma or the

Esme-Reinhard Rhombus Theorem) and have them posted with their titles, students will be

justifiably proud. Give conjectures titles, as well, in order to highlight their importance and as a

way to promote them so that others will try to work on a proof.

Introduce students to the traditional celebration: ending a proof with �Q.E.D.� Q.E.D. is an

acronym for �quod erat demonstrandum,� Latin for �that which was to be demonstrated.� At the

end of a proof by contradiction, students can use �Q.E.A.,� which stands for �quad est

absurdum� and means �that which is absurd� or �we have a contradiction here.� These endings

are the understated mathematical versions of �TaDa!� or �Eureka!� Modern, informal

equivalents include AWD (�and we�re done�) and W5 (�which was what we wanted�) (Zeitz, p.

45). We have also seen � � and �MATH is PHAT!� at the end of student proofs. Professional

publications are now more likely to end a proof with a rectangle ( ) or to indent the proof to

distinguish it from the rest of a discussion, but these are no fun at all.

Do remind students that once their celebration is over, their work is not necessarily done.

They may still need to explore their theorem further to understand why it is true and not just that

it is true, to come up with a clearer or more illuminating proof, or to extend their result in new

directions. Additionally, proofs sometimes introduce new techniques that we can productively

apply to other problems. In other words, the completion of a proof is a good time to take stock

and figure out where to go next in one�s research. Like movies that leave a loose strand on which

to build a sequel, most math problems have natural next steps that we can follow.
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WRITING PROOFS

We are not very pleased when we are forced to accept a

mathematical truth by virtue of a complicated chain of formal

conclusions and computations, which we traverse blindly, link by

link, feeling our way by touch. We want first an overview of the

aim and of the road; we want to understand the idea of the proof,

the deeper context. - Hermann Weyl (1932)

The standard form for a mathematical proof is prose interwoven with symbolic

demonstrations and diagrams. Students who write paragraph explanations will often comment

that they do not yet have a �real proof.� However, the two-column style that they believe to be

the only acceptable format is often not as clear or informative as a proof with more English in it.

Encourage them to add narrative to their proofs and to use whatever form seems most effective at

communicating their ideas. Let them know that written language is a part of mathematics.

Weyl encourages us tell the story of our proof at the start so that each step in the presentation

can be located on that roadmap. We should be able to say to ourselves �Oh, I see why she did

that. She is setting up for this next stage� rather than �Where on Earth did that come from? Why

did she introduce that variable?� Our goal is not to build suspense and mystery, but to provide

the motivation for the important steps in our proofs. As noted earlier, we improve a lengthy

proof�s story by considering how the pieces of the proof fit together into connected chunks that

we can present as separate theorems or lemmas. These chapters in the story reduce the number of

arguments that our readers have to manage at any given stage in their effort to understand our

proof.

Published proofs are often overly refined and hide from the reader the process by which the

mathematician made her discoveries. As teachers, we want to encourage students to share the

important details of that process. What methods did they consider? Why did some work and

others not? What were the examples or special cases that informed their thinking? What dead

ends did they run into? The teacher mentioned above, who disliked proof, was frustrated because

the proofs that he had read were too polished to be a guide for how to develop a proof. The more

we include our data, insights, experimentation, and derivations in our proofs, the more they will

help others with their own mathematics.
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We want to find a balance between the desire to convey the process of discovery, which is

often circuitous, and the need to present a coherent argument. Students should develop an outline

for each proof that reflects which ideas are dependent on which others. They should punctuate

their narrative with clearly labeled definitions, conjectures, and theorems. Proofs should include

examples that reveal both the general characteristics of the problem as well as interesting special

cases. Examples are particularly helpful, not as a justification, but because they provide some

context for understanding the more abstract portions of a proof. Examples may also help clarify

imprecise notation or definitions.

Some additional recommendations for making proofs more readable:

•  Define, in words, exactly what a variable or function represents when you introduce it. If

your work involves a number of variables, you may want to make a legend to which readers

can conveniently refer.

•  Choose mnemonic variable names (e.g., p for perimeter or c2 for a second coefficient) and do

not feel limited to single letter names for functions or variables (although long names do

make it more difficult to read complicated expressions).

•  Be sure that the words that you use have unambiguous mathematical meaning. If a word is

not a familiar mathematical term, provide a definition. For example, a pair of students

working on the Raw Recruits project wrote to their mentor that they were investigating �How

many ways can they do it wrong but still feel that they are right in a line of six recruits.�

Their mentor wrote back requesting clarification of the terms �right� and �wrong.� They

were able to be more precise, stating that a configuration of recruits was wrong if the recruits

were not all facing in the same direction but seemed right if each recruit was facing either

open space or another recruit�s back. (See the Connect the Dots teaching notes for another

example).

If any parts of your research were carried out collaboratively or based on someone else�s

thinking, be sure to acknowledge their work and how you built upon it. For a full discussion on

how to write up your results, see Writing a Report in Presenting Your Research.

http://www2.edc.org/makingmath/handbook/teacher/definitions/definitions.asp#WritingDefinitions
http://www2.edc.org/makingmath/mathprojects/recruits/Links/recruits_lnk_1.asp
http://www2.edc.org/makingmath/mathsettings/connect/Connect.asp
http://www2.edc.org/makingmath/mathsettings/connect/ConnectTheDots_TeachNotes.asp#Day3
http://www2.edc.org/makingmath/handbook/teacher/PresentingYourResearch/PresentingYourResearch.asp#WritingAReport
http://www2.edc.org/makingmath/handbook/teacher/PresentingYourResearch/PresentingYourReseach.asp
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EVALUATING PROOFS

We evaluate proofs at several levels. First, we need to see if we can understand what the proof

says. If our mathematical background is sufficient to understand the proof, then, with effort, we

should be able to make sense of it (see Reading Technical Literature in Getting Information).

Next, we want to decide whether the proof is actually a successful proof. Do all of the pieces fit

together? Are the explanations clear? Convincing? A good proof does not over-generalize. If a

proof does not work in all cases, is it salvageable for some meaningful subset of cases?

Students should be given time to read each other's proofs. They should be skeptical readers

who are trying to help their classmate improve their work. They should be supportive by offering

helpful questions about claims that are unclear or steps that would improve the proof. The writer

of a proof should expect to address any concerns and to work through several drafts before the

class declares her work completed. Although we are tempted to believe in our own discoveries,

we are also obliged to look for exceptions and holes in our reasoning and not leave the doubting

just to our peers.

Once a proof passes the first hurdle and we believe it is correct, we come to a different set of

criteria for judging proofs. These criteria are both aesthetic and functional and help us to

understand why we would want to find different ways to prove a particular theorem. Here are

some considerations that students might apply to proofs that they study (see Evaluating

Conjectures for further considerations):

•  Does the proof use clear language? Are ideas presented in a logical order or is the structure

of the proof problematic?

•  Does the author use symbols in a way that strengthens their argument? Did they provide

diagrams and examples when needed?

•  Does the proof provide insight into the question? Does it make a surprising connection

between two ideas or problems?

•  Are the methods new or applied in a creative way? For example, did the author use symmetry

that might not have been initially apparent?

•  Is the proof interesting? Do the ideas of the proof appeal to you visually or in some abstract

way because of the patterns involved?

http://www2.edc.org/makingmath/handbook/teacher/GettingInformation/GettingInformation.asp#ReadingTechnicalLiterature
http://www2.edc.org/makingmath/handbook/teacher/GettingInformation/GettingInformation.asp
http://www2.edc.org/makingmath/handbook/teacher/Conjectures/Conjectures.asp#EvaluatingConjectures
http://www2.edc.org/makingmath/handbook/teacher/Conjectures/Conjectures.asp#EvaluatingConjectures
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•  Does the proof lead to other theories or generalize to solve other questions? How broad is its

impact? Does it open new avenues for our investigation?

Each of us has our own aesthetic for which areas of mathematics and ways of solving

problems are most appealing. Mathematicians will often call a proof �elegant� or �kludgy� based

on their standards of mathematical beauty. Is a substitution, offered without motivation, that

quickly resolves a problem (e.g., let f(x) = cotan(1 � x/2)) magical, concise, or annoying?

Whichever of the standards above move us to call a proof beautiful, it is an important recognition

that judgments of beauty are part of mathematics. Share your own aesthetics with students and

encourage them to develop their own. It is perfectly reasonable simply to enjoy geometric or

number theoretic problems and solutions more than some other area of mathematics. Some

students may love problems that start out complicated but then sift down to simple results. Help

them to recognize and celebrate these interests while broadening their aesthetics through the

sharing of ideas with each other.

Class Activity: One way to highlight the different characteristics of proofs is to ask students

to study and compare alternative proofs of the same theorem. Handout Three Proofs that  2  is

irrational (table 1, below) and give students time to read all three slowly (note: students should

be familiar with proof by contradiction). Ask them to write down questions that they have about

the different steps in the proofs. Next have them work in small groups trying to answer the

questions that they recorded and clarify how each proof achieves its goal. Have each student then

write an evaluation of the proofs: Does each proof seem to be valid? If not, where do they

identify a problem? Which proof appealed to them the most? Why? Ask them to consider the

other criteria above and choose one or more to address in evaluating the proofs.

Students may note that there are similarities among the proofs. All three proofs are indirect

and all three begin by eliminating the root and converting the problem to one of disproving the

possibility that     2b2 = a2. These first steps reduce the problem to one involving only counting

numbers instead of roots and remove the likelihood that any not-yet-proven assumptions about

roots or irrational numbers will creep into the reasoning.

http://www2.edc.org/makingmath/mathtools/contradiction/contradiction.asp
http://www2.edc.org/makingmath/mathtools/contradiction/contradiction.asp
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Table 1. Three Proofs that  2  is Irrational

Proof A Proof B Proof C

Assume that   2  is rational:   2 = a b, with a and b counting numbers

Assume that a and b have no
common factors (the fraction

is in lowest terms)

Note: Proof B does not
require this additional

assumption.

Assume that a and b have no
common factors (the fraction

is in lowest terms)

Square to get   2 = a2 b2

Simplify to   2b2 = a2

    2b2 is even, so     a2 must be
even as well

Let  a i
ei  be the prime factors

of a and their powers

Consider the digit in the units
place of     a2

    a2 is even, so a must be (this
requires a lemma: If a is an

integer and     a2 is even, then a
is even. Can you prove it?)

Then   a2 has prime factor

    ai 2ei  times and equals

��    a1
2e1 ⋅a2

2e2⋅�⋅ an
2en

Squares of integers will have
0, 1, 4, 5, 6, or 9 in the units
place (if we put all integers

into the form 10m + d, we see
that only d contributes to the

units place)

If a is even then let a = 2m, m
an integer, and substitute:

    2b2 = a2 = 2m( )2 = 4m2

Likewise, all prime factors
will appear an even number
of times in perfect squares

  a2 and b2

So     a2 ends in

0, 1, 4, 5, 6, or 9.

Simplify to get     b2 = 2m2 In particular, 2 appears as a
factor in   a2 an even number
of times (perhaps zero times)

  2b2 must therefore end in
twice any of these digits

(mod 10): 0, 2, or 8

By the same reasoning as
above,    b2 as well as b must

be even

However, 2 must appear as a
factor in   2b2 an odd number
of times (once more than the
even number of times in   b

2)

For   a2 and     2b2 to be equal,
they must both end in the

only digit common to these
lists: 0.

a and b are both even and so

  a b  above is not in lowest
terms as required

But each integer has a unique
prime factorization, so   a2

and   2b2 cannot be equal

For   a2 and     2b2 to end in 0, a
and b must have 5 as a factor
and so  a b  is not in lowest

terms as required

Q.E.A. We have a contradiction and so our assumption must be false.
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  2  cannot be rational and is
therefore irrational

  2  cannot be rational and is
therefore irrational

 2  cannot be rational and is
therefore irrational

Students are drawn to different parts of the three proofs. Some prefer Proof B because it does

not rely on the assumption�kids may call it a gimmick�that a and b have no common factors.

This objection is a good occasion to discuss the �story� of how that assumption comes into

proofs A and C. It is essential to establishing the contradiction later on in the proof, but how did

the prover know it was needed? The answer is that they didn�t and that it was put in place once

the need was discovered (we have watched students develop this proof themselves and then stick

in the condition in order to force the contradiction). If the authors of these proofs included details

of their derivations�the story of how they thought up the proofs�they would avoid the

discomfort that the austere versions create.

Proof C relies on a case-by-case analysis that the different ending digits cannot match. Again,

despite the bluntness of its means, it seems to explain why   a
2 b2  cannot reduce to 2. This

method becomes more elegant with fewer cases when we look at the final digit in a smaller base

such as base 3.

The point of the above discussion is not to have your students choose one �best� proof, but to

have them weigh the pros and cons of each. We want them to discover that not everyone in the

class has the same mathematical tastes. However, some criteria are more objective than others.

For example, one important criterion is how easily a proof may be generalized to related

problems. In the case of the three proofs in table 1, you may ask students to decide which extend

readily to show that the roots of other integers (or all non-perfect squares) are irrational. We

might also inquire why the same proof methods do not show that  4  is irrational.

Another objective criterion is the sophistication of the mathematics needed to support a proof.

Proof A requires fewer lemmas than the other two. Despite students� frequent preference for

proof B, it relies on the comparatively �heavy machinery� of the fundamental theorem of

arithmetic (positive integers have a unique prime factorization). Mathematicians often applaud a

proof that uses more elementary methods, but, in this case, the elementary approach is not

necessarily easier to understand.
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You can introduce the activity described above with other accessible theorems. Pythagorean

Theorem and its Many Proofs (Bogomolny) and Pythagorean Theorem (Weisstein) provide

several dozen different proofs of the Pythagorean Theorem. Make handouts of a variety of these

proofs and have each student pick three to study. Which did they like best? Why? Do they prefer

those that involved geometric dissections or algebraic calculations? Those that were shorter and

skipped steps or those that explained each step carefully? Can the class provide the missing

arguments for the less rigorous �proof without words� diagrams? Encourage them to see the

particular appeal of each proof.

PRACTICE PROOF ACTIVITIES

Earlier in this section, we suggested that students� proof experiences are most effective when

they emerge organically from student investigations. Nevertheless, for a number of reasons, there

is value to students practicing creating proofs as well. For example, practice helps students hone

techniques and instincts that they can use in work that is more open-ended. Additionally, some of

the reasons given in Why Do We Prove? remain relevant even if we are told what to prove.

When students share their proofs with each other, they get further practice reading proofs and

comparing the different types of reasoning used to justify theorems.

The transfer of understandings derived from practice problems is particularly likely if the

practice is not overly structured. Proof exercises not connected to the study of a particular

content area (e.g., triangle congruence or induction) force students to think about which of their

many skills might help solve the problem. For each one, they might ask, �Should we introduce a

variable? Will an indirect proof work?� This way, they are practicing methods and making

thoughtful choices. If students do not a have a clear reason for choosing one approach over

another, point out to them they do not have to be paralyzed in the face of this uncertainty. They

can just start experimenting with different representations of the information and different proof

methods until one of them works.

Students� first proofs are rarely polished or precise. They may over-emphasize one point

while omitting an important consideration (see, for example, the student proof below). Without

experience devising symbolic representations of their ideas, students� representations are often

inefficient or unhelpful. For example, a student working on the Amida Kuji project was asked by

her teacher to clarify and strengthen an English argument using symbols. She devised substitutes

http://www.cut-the-knot.com/pythagoras
http://www.cut-the-knot.com/pythagoras
http://mathworld.wolfram.com/PythagoreanTheorem.html
http://www2.edc.org/makingmath/mathprojects/amidakuji/links/amidakuji_lnk_1.asp
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for her words (�hi is a horizontal rung�), but the symbols had no value facilitating her

computations and led to an argument that was more difficult to read. The proof had that �mathy�

look to it, but, until the student had a better grasp of the underlying structures of the problem and

their properties, she was in no position to develop a useful system of symbols.

 When we respond to students� early proofs, our emphasis should be on the proof�s clarity and

persuasiveness. Their arguments may take many forms: paragraphs, calculations, diagrams, lists

of claims. Any of these may be appropriate. We want to help them identify any assumptions or

connections that they have left unstated, but we also have to judge how convincing and complete

a line of reasoning has to be. Can steps that are obvious be skipped? To whom must they be

obvious? Does a proof have to persuade a peer, a teacher, or a less knowledgeable mathematics

student? We want to help younger students develop rigor without bludgeoning them on specifics

that they may not be ready to attend to. Can students adopt the attitude of the textbook favorite,

�we will leave it as an exercise for the reader to verify that�� ? Fine readings on this topic

include �I would consider the following to be a proof�� and �Types of Students� Justifications�

in the NCTM Focus Issue on the Concept of Proof (1998).

One answer to the above questions is that a student�s classmates should be able to understand

and explain their proofs. If classmates are confused, they should explain where they lose the

thread of an argument or what they think a sentence means so that the author can rewrite her

proof to address these confusions. Once a proof has passed the peer test, we can note additional

possible refinements that will help our students develop greater sophistication in their thinking

and presentation over time. Try to focus on certain areas at a time and expand students� rigor and

use of symbols incrementally. We try to emphasize proper vocabulary first (see Definitions). The

development of original and effective symbolic representations tends to take more time to

appear.

Be aware of �hand-waving� in proofs. Hand-waving is what a magician does to distract his

audience from a maneuver that he does not want them to notice. For mathematicians, hand-

waving is a, perhaps unintentional, misdirection during a questionable part of an argument. The

written equivalent often involves the words �must� or �could� (e.g., �the point must be in the

circle�� ) without justification of the claimed imperative. Sometimes we need to note, but

accept, a bit of hand-waving because a gap is beyond a students� ability to fill.

http://www2.edc.org/makingmath/handbook/teacher/Definitions/Definitions.asp
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Many of the proof exercises provided here are more suitable for high school than middle

school students. The whole class settings described below as well as practice problems 1, 4, 6, 7,

15, and 16 are likely to work with middle school students (although others may also be useful

depending on the students� background). Particularly with younger students, doing proof within

explorations that help them see how a proof evolves naturally from questions and observations is

more valuable than exercises that ask them to prove someone else�s claims. When we are given a

�to prove�, we have to go back and explore the setting anyway in order to develop some intuition

about the problem. Older students, who have a broader array of techniques from which to

choose, are more likely to benefit from proof exercises.

Once a class has proven theorems in the context of longer research explorations, you can use

the practice problems as a shorter activity. Choose a few problems to put on a handout and

distribute them to each student. Give the students a few days to work on the problems and then

discuss and compare their discoveries and proofs. Based on these discussions and peer responses,

each student can then rewrite one of their proofs to produce a polished solution.

Kids need more experience trying to prove or disprove claims without knowing the outcome

ahead of time. In genuine mathematical work, we pose a conjecture, but we are not sure that it is

true until we have a proof or false until we have a counterexample. The practice problems below

sometimes call attention to this indeterminate status by asking students to �prove or disprove�

the claim. Some of them actually ask for a proof even though the claim is false. We include these

red herrings because students are often overly confident about their own conjectures and need to

develop greater skepticism. Students should not consider this feature foul play, but good training

in skeptical thinking. We are often taught to see texts as unerring authorities, but even the most

prestigious journals of mathematics and science occasionally publish results that turn out to be

false or incomplete. We have found that students are delighted when, and will put great effort

into proving that, a textbook or teacher is wrong. We are simply building in that opportunity.

Once a false statement has captured students� attentions, challenge them to turn it into a true

claim. Can they identify a significant set of cases for which the claim is true (e.g., by changing

the domain to remove the counterexamples, see problem 10)? Can they generalize the claim

(e.g., problem 7 is false, but the more general claim for two relatively prime divisors is true)?
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A setting for whole class practice

The related games Yucky Chocolate and Chomp are good settings for early work with proof.

These games are effective with both middle and high school classes. Both games begin with an

n-by-m array of chocolate squares (n not necessarily different from m) in which the top left

square of chocolate has become moldy.

Rules for the game of Yucky Chocolate: On each turn in the game of Yucky Chocolate, a

player chooses to break the bar of chocolate along a horizontal or vertical line. These breaks

must be between the rows of squares (figure 3). The rectangle that is broken off is �eaten� by

that player. The game continues with the rectangle that includes the yucky square. You can

introduce this game with real chocolate, but the incentive to break off large pieces for

consumption may overwhelm any other strategic thinking. Players take turns until one player, the

loser, is left with just the yucky piece to eat.

Figure 3. A horizontal break in the game of Yucky Chocolate leaves a 2 by 4 board

Introduce your class to the rules of the game and then have them pair off to play several

rounds starting with a 4 by 6 board. They can play the game on graph paper, mark off the starting

size of the chocolate bar, and then shade in eaten portions each turn. After a few rounds of play,

students will start to notice winning end-game strategies. In one fifth-grade class, the students

observed that when a player faced a 2-by-2 board, they always lost. Given that observation,

additional play led them to see why a 3-by-3 board was also a losing position. They were able to

turn these conjectures into theorems with simple case-by-case analyses. For the 3-by-3 board, the

symmetry of the situation meant that there were really only two distinct moves possible (leaving

a 2-by-3 or 1-by-3 board). Each of these moves gave the other player a winning move (reducing

the board to a 1-by-1 or 2-by-2 case).

After the class realized that the smaller square positions were losers, some students took the

inductive leap to conjecture that all n-by-n boards represented losing positions. One girl, who
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had never studied proof by induction, excitedly began explaining how each larger square array

could be turned into the next smaller one and that she could always force the game down to the

proven losing square positions. She had an intuitive understanding of the validity of an inductive

argument. She then stopped and realized that her opponent might not oblige her by carving off

just one column and that she did not know how big the next board might be. She had cast doubt

on the reasoning of her own argument. She was facing another form of inductive proof in which

one builds not just from the next smallest case but all smaller cases. After a while, the class was

able to show that regardless of the move that an opponent facing an n-by-n board takes, there

was always a symmetrical move that made a smaller square board. Therefore, they could

inexorably force a win. This argument made it possible for a full analysis of the games that led to

a win for the first player (n ≠ m) and those that should always be won by the second player.

Once students have a complete understanding of Yucky Chocolate, the game provides a nice

opportunity for practicing problem posing. Ask the students to each develop one or more

variations of the game. What characteristics can they change? Does the game remain interesting?

Does it become more complicated? Do they have to change any rules to make it still make sense?

Some of the changes that students have explored include moving the location of the moldy

square, making the problem three-dimensional, changing the number of players, or playing with

a triangular grid of chocolate.

Rules for the game of Chomp: The game of Chomp starts with the same slightly moldy

chocolate bar, only the players take turns biting the chocolate bar with a right-angled mouth.

These bites remove a chosen square and all remaining squares below and/or to the right of that

square (figure 4. See Joyce for further examples).

Figure 4. Two turns in a game of Chomp

These bites can leave behind boards with complicated shapes that make it difficult to analyze

which player should win for a given starting board. Student investigations can identify many sets

of initial configurations (e.g., the 2-by-n or n-by-n cases) where a winning strategy can be

http://www2.edc.org/makingmath/mathtools/induction/induction.asp
http://www2.edc.org/makingmath/handbook/teacher/problemposing/problemposing.asp
http://plus.maths.org/issue14/xfile/
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determined and a proof produced (see Keeley And Zeilberger). Zeilberger�s Three-Rowed

Chomp provides an elegant existence proof that the first player in a game must always have a

winning strategy. Being an existence proof, it provides no hint at how the winning strategy might

be found. See Gardner, Joyce, Keeley, and Stewart for more on the game of Chomp. The article

by Stewart also discusses Yucky Chocolate. The Keeley article provides a lovely discussion of

one class�s definitions, conjectures, and theorems about the game of Chomp.

Other Whole Class Problems and Resources

•  Carmony (1979) presents the following setting: n people are standing in the plane and the

distances between all pairs of individuals are distinct (no two alike). Each person is armed

with a cream pie that they hurl at their nearest neighbor. Everyone�s throw is accurate. If the

number of pie throwers is odd, what theorems can you state and prove about this situation?

There are various possibilities. One is:

Theorem: At least one person will not be thrown at.

Proof: Let di be the distance the ith person is from her closest neighbor. Because all

distances between the throwers are unique and because each distance is �owned� by two

throwers, no more than two di can have the same value. If the largest di belongs to just one

person (they are not the person closest to the person who is closest to them), that person will

not be thrown at, because all other throwers have a nearer neighbor (due to their smaller di).

If two people share the largest di, they will throw at each other (everyone else has a smaller di

and will throw at someone else). Ignore those two mutually antagonistic throwers and apply

our argument to the smaller problem of n � 2 throwers and n � 2 pies. For any arrangement of

odd throwers, we will eventually encounter a thrower with a distinct largest di, in which case

the claim is proven, or we keep ignoring pairs of isolated throwers (reducing the problem to a

smaller set) until we are left with just one thrower who throws at someone else and is left

unscathed.

Corollary: At least one person must be hit at least twice.

Proof: Since we have at least one clean thrower, there are more pies remaining than throwers

and by the pigeonhole principle, at least one thrower must be hit by more than one pie.

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/chomp.pdf
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/chomp.pdf
http://www2.edc.org/makingmath/mathtools/pigeonhole/pigeonhole.asp
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What is the smallest fraction of people that can be hit? Does this answer change for the one-

dimensional case of n collinear people? For people floating in space? With 7 hurlers, the

arrangement below (figure 5) results in all pies landing on the two throwers in the center.

This establishes an upper limit for the two-dimensional answer at 2/7.

Figure 5. Seven pie throwers and just two targets

•  Algorithms and Ice Cream for All (MegaMath) has a sequence of graph theory lessons with

introductory proof experiences that are accessible to elementary students, but which are also

of value for older students.

•  Ron Knott�s Fibonacci Puzzles presents an impressive variety of settings that all generate the

Fibonacci sequence. A sampling of these problems can be used to give students practice

explaining the isomorphism between each setting and the series definition, F0 = F1 = 1 and

Fn = Fn � 1+Fn � 2. The creation of such a mapping between two seemingly different problems

is central to a great deal of mathematics. You can present these problems individually or

along with others that do not generate the Fibonacci sequence so that students can discover

the patterns for themselves. Once they conjecture which sequence is involved, they can try to

prove the connection.

As an example, consider the problem of the number of trains of length n that can be made

from cars of length 1 and 2:

n Trains Number of Trains

1 1

2 , 2

3 , , 3

http://www.cs.uidaho.edu/~casey931/mega-math/workbk/dom/dom.html
http://www.cs.uidaho.edu/~casey931/mega-math/
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibpuzzles.html
http://www2.edc.org/makingmath/mathprojects/trains/trains.asp
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4 , ,

, ,

5

We note that the first two values match the second and third Fibonacci terms. We can finesse

this difference by noting that there is also 1 way to make a train of length 0 or we can just say

that we are starting our series in a different place. How do we make all trains of length n?

Well, each train must end with a single car or a double car. We make a length n train that

ends with a single car by appending it to a train of length n � 1. We make a length n train that

ends with a double car by appending it to a train of length n � 2. Thus, the number of ways to

make such a train is the same as the number of n � 1 and n � 2 trains combined and this is

just the recursive rule that defines the Fibonacci sequence.

•  Our search for research problems and settings does not have to take us away from the

standard curriculum. For example, students can discover and prove many theorems about

quadrilaterals. This process can provide ample practice learning and applying definitions,

using the triangle congruence theorems, and converting English conjectures into symbolic

statements to prove.

Rather than work through an exploration of each quadrilateral type sequentially, provide the

class with standard definitions of each and have them draw (or construct) examples of each.

Point out that each shape has a number of properties that are a consequence of their definition

(e.g., reflection symmetry) that are not explicitly part of their definition. The handout

Quadrilateral Properties will encourage a systematic exploration of these properties, each of

which can be turned into a conjecture (e.g., �if the diagonals of a quadrilateral are congruent

and bisect each other, then the figure is a rectangle� or �if a figure is a rhombus then it is a

parallelogram�) that students can try to prove (see writing conjectures for more on this topic).

For each proof, they should produce a labeled diagram and a statement of the given

information in terms of those labels. The given information should be strictly limited to that

provided in the definitions of the terms in the premise of the conjecture.

Once students have generated a number of proofs using the above activity, they can move on

to explore the properties of the perpendicular bisectors or midpoints of the sides or the

http://www2.edc.org/makingmath/handbook/teacher/conjectures/conjectures.asp#WritingConjectures
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bisectors of the angles of the different quadrilaterals. They might even explore dividing the

angles or sides into multiple equal parts (n-secting them). Dynamic geometry programs, such

as Geometer�s Sketchpad, are particularly helpful in creating clear diagrams and taking

accurate measurements that aid students in making discoveries with these settings.

•  See Proofs In Mathematics (Bogomolny) for a discussion of proof and many nice proof

examples and problems.

Proof Without Words

Diagrams play a complex role in mathematics. Many mathematicians think about even quite

abstract ideas using visual images. Algebraic ideas often have natural geometric representations.

We will often try to draw a picture of a problem that we are exploring because the image

conveys a great deal of information organized according to a set of meaningful relationships.

However, pictures do have limitations that students need to appreciate. In trying to gain insight

from a diagram, we are restricted by its static nature. It shows us just one instance. The appeal of

dynamic programs such as Geometer�s Sketchpad is, in part, that they allow us to quickly view

multiple examples. Diagrams can mislead us if they are not created with precision and even

accurate pictures may possess properties that are not typical of all cases. While diagrams may

persuade and inform us, they do not constitute proofs. As with other types of examples, a picture

may look convincing simply because we have not yet imagined how to construct a

counterexample.

We want to help our students learn how to use diagrams as tools for furthering their

investigations and how to extract information from them. As they work on problems, we can

prompt them to consider whether a graph or other visual representation can be generated and

studied. When they are reading other people�s proofs, encourage them to study all labels and

features and to connect those details to the text and symbolic statements in the discussion�to

see how they illuminate that discussion and whether they serve as an effective visual counterpart.

Students can also get practice interpreting diagrams by studying �proofs without words.�

These �proofs� are pictures that their author considers so enlightening that they readily convince

us that we can dependably generalize the pattern to all cases. Depending on how wordless a

proof without words is (and some do have the occasional accompanying text), the pictures can

take some effort to analyze. Effective pictures can be the inspiration for a more formal proof.

http://www.cut-the-knot.com/proofs/index.html
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Winicki-Landman (1998, p. 724) cautions that some students may respond negatively to proofs

without words if they feel that they will have to come up with such elegant diagrams themselves.

Be sure to emphasize the value of working with diagrams and the purpose of these activities.

When �proof pictures� do not even have variable labels, encourage students to choose variables

for the different quantities in the picture and to see what the pictures tell them about those

variables.

See Proof without words (Bogomolny) for further discussion and additional examples.

Some Problems

1) How does this diagram show that the sum of a positive number and its reciprocal is at least 2

(Nelson, p. 62):

2) What facts are suggested by the two pictures below? (Things that look like squares are.)

b

a

3) How do the pictures below �prove� that a2 + b2 ≥ 2ab ?

http://www.cut-the-knot.com/ctk/pww.shtml
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Their Solutions

1) If the rectangles are congruent, then each has an area of x . 1/x = 1. So, the area of the outer

square is both (x + 1/x)
2 and 4 . 1 + (the area of the inner square). So long as the inner square

exists, this equality yields the inequality (x + 1/x)
2 > 4. Taking the square root produces x +

1/x > 2 which was what we wanted. For what value of x will there be no inner square?

2) Possibilities include a2 � b2 = (a + b)(a � b)  and a2 > (a + b)(a � b). This latter interpretation

is the picture that matches kids� observations that, for example, 202 is greater than 21x19,

24x16, 23x17, or any other product of two distinct numbers equidistant from 20.

3) If the diagram on the left is a2 + b2, the challenge is to explain how we know that the

rectangles on the right each have dimensions a and b. (The problem comes from Flores

(2000))

Twenty Practice problems

Solutions to these problems are provided below as a way for you to gauge the difficulty of the

problems and to determine their appropriateness for your class. Do not expect or require the

student�s solutions to match the ones provided here. Alternatively, try to work on the problems

yourself and with your students so that you can model how you think about analyzing problems

and constructing proofs. After you and the students have your own results, you can use the

solutions to make interesting comparisons. As the class discusses the different solutions to the

problems, be sure to highlight the different methods (e.g., induction, proof by contradiction,

case-by-case analysis) that they used. This emphasis will reinforce the message that there are

common techniques that are often effective.

Once students have worked through some initial proofs, it is good to anticipate the frustrations

and barriers that they will face as they attempt longer and harder problems. The NOVA (1997)

video The Proof, which details Andrew Wiles� work on Fermat�s Last Theorem, provides a

motivational lesson that also tells students about one of the great mathematics accomplishments

of the past century. Although Wiles� proof is intimidating in its inaccessibility, his personal

struggle and emotional attachment to the task are inspiring. After watching the video about his

seven-year journey, students have a greater appreciation for the role that persistence plays in
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successful endeavors. The article Ten lessons from the proof of Fermat’s Last Theorem (Kahan)

can be used as a teachers� guide for a follow-up discussion. See Student and Teacher Affect for a

further discussion of motivational considerations.

Note: Some of these problems may ask you to prove claims that are not true. Be sure to

approach each with some skepticism�test the claims and make sure that a proof attempt is

called for. If you disprove a statement, try to salvage some part of the claim by changing a

condition.

1) Without appealing to Fermat�s Last Theorem, prove that there do not exist prime numbers a,

b, and c, such that a3 + b3 = c3.

2) Prove that the number of faces of a polyhedron is less than or equal to the number of vertices.

3) Prove or disprove: For all integers n > 1, 2n+1 < 3n.

4) 25 students are sitting in a 5 x 5 array of seats. Is it possible for them to change seats so that

each student ends up in an adjacent seat in front of, behind, or to the side of their original

seat? Prove your answer.

5) Prove that 8 divides 9k � 1 for k ≥  1.

6) An urn is filled with 75 white beads and 150 black ones. A pile of black beads abuts the urn.

Remove two beads from the urn. If one is black, put back the other (white or black). If both

are white, put back a black one from your pile. Each time you repeat this process, there will

be one less bead in the urn. What will be the color of the final bead left in the urn?

7) Prove that if a number is divisible by 10 and is also divisible by 15, then it is divisible by

150.

8) A) Prove or disprove. If true, characterize all such numbers that match the description: A

whole number can have all odd factors.

B) Prove or disprove. If true, characterize all such numbers that match the description: A

whole number can have one quarter of its factors even.

C) Let p(N) = the portion of factors of whole number N that are even. What values are

possible for p(N)?

9) Prove that for five points, no three of which are collinear, there will always be four that form

a convex quadrilateral.

http://www2.edc.org/makingmath/handbook/teacher/StudentAndTeacherAffect/StudentAndTeacherAffect.asp
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10) Prove that any subset of n + 1 different counting numbers taken from the set S = {1, 2, 3, �,

2n} will include a pair that are not relatively prime. (Numbers are relatively prime when

they have no common factors.)

11) Prove that any subset of n + 1 different counting numbers taken from the set S = {1, 2, 3, �,

2n} will include a pair that are relatively prime.

12) Prove that if two n-gons (n > 3) have n � 1 vertices in common, then the convex hulls of

those n-gons must have at least two sides in common. (In two dimensions, the convex hull of

a finite set of points will be the convex polygon of smallest area that contains all of the

points. The vertices of the polygon will be points of the set. The more general definition in

all dimensions and for sets of any size is the intersection of all convex sets containing the

set.)

13) Each square of a 3 x 7 grid is colored either red or black. Prove or disprove: Any such

coloring will include at least four squares of the same color that form the corners of a

rectangle.

14) Prove or disprove: An integer consisting of 3n identical digits is divisible by 3n.

15) An m x n rectangle is made from mn unit squares. A diagonal of the rectangle passes through

the interior of how many of these squares?

16) Is it possible to add and subtract the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 each used exactly

once (along with 8 intervening addition and subtraction signs) to arrive at a total of 10? If so,

provide an example. If not, prove why not.

17) Choose a set of five points in the plane with integer coordinates. Consider the midpoints of

each of the segments with endpoints chosen pair-wise from this set. Is it possible to choose

the five points such that no midpoint has integer coordinates. If so, provide an example. If

not, prove why not.

18) Consider permutations (different orders) of the numbers 1 through n. Let�s give each

permutation a score that tells how many of the adjacent pairs in the list have the larger

number to the right. For example, for the list {3, 1, 4, 2, 5}, we have the comparisons 3 > 1,
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1 < 4, 4 > 2, and 2 < 5. The right-hand value is larger in two of these pairings, so the list gets

a score of 2. Let An be the average score for all lists of length n. Show that there are as many

lists of length n with a score less than An as there are lists with a score greater than An.

19) Three numbers m, n, and p have the property that m divides n, n divides p, and p divides m.

What must be true about these numbers? Prove your conjecture.

20) Given two distinct real numbers, x and y, prove that the following three statements are

interchangeable:

i. x is greater than y.

ii. The mean, (x + y)/2, is less than x.

iii. The mean, (x + y)/2, is greater than y.

Sample solutions to the Practice Problems

1) Consider two different cases:

i) a, b, and c are all odd. This is not possible (we leave it as an exercise for the reader to

explain why not!).

ii) Given your reason for i) above, there must be at least one even among a, b, and c. 2 is the

only even prime. Let�s consider the two possibilities: a or b is 2 (by symmetry, these are

the same case) or c is 2. A not-very-exhausting exhaustive search of all small perfect

cubes less than 8 shows that no two of them add up to 8, so c cannot be 2. If a or b were

2, we would need two perfect cubes that differ by 8. But the smallest difference between

any two odd counting numbers (no less odd primes) is 33 � 13 = 26, so there is no

solution. (Note: we could more rigorously defend this last claim by showing that (2n +

3)3 �  (2n + 1)3 is strictly increasing).

2) The claim is false. Counterexamples include the regular octahedron and regular icosahedron.

Are there specific conditions that we could add to make the claim true?

3) Students begin by generating some confirming data. It becomes clear that once the right side

is larger, its more rapid growth will assure that it remains larger. An informal inductive

student proof is: when n = 2, 8 < 9. Thereafter, the right side triples and the left side doubles,

so the right side remains larger.
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Some students offer a more formal, but not necessarily more convincing, inductive proof: For

our base case, n = 2, we have 8 < 9. Given 2n+1 < 3n, multiply both sides by 2 to get 2n+2 <

2.3n. But, since 3n is always positive, 2.3 n < 3.3n or 3n+1. Therefore, 2n+2 < 3n+1 which is the

n + 1st case.

A non-inductive approach is possible: divide both sides of the original inequality by 2n to

yield 2 < (3/2)n. The exponential expression on the right side increases with increasing n and

is first greater than 2 when n = 2.

What about using a graph of the functions on each side of the inequality? The right side looks

like it is always higher, but it is easy to find cases of functions that eventually switch places

again (e.g., graph the sides of 2n < 1000n2). Using a graph in this case is equivalent to

looking at a large number of examples that do not provide a proof.

4) We can understand this situation by studying smaller cases. It is easy to find a reassignment

that works for a 2 x 2 array:

 

A B
D C
� 

� 
� 

� 

� 
� →

D A
C B
� 

� 
� 

� 

� 
� 

However, when we look for a solution to the 3 x 3 case, we always end up with an empty seat

in a corner or the middle:

    

1 2 3
4 5 6
7 8 9

� 

� 

� 
� 
� 

� 

� 

� 
� 
� 

→
1→ 2 ↓ 3 ←

4 ↓ 5 ← 6 ↑

7 → 8 → 9 ↑

� 

� 

� 
� 
� 

� 

� 

� 
� 
� 

→
1& 3 6

5 2 9
4 7 8

� 

� 

� 
� 
� 

� 

� 

� 
� 
� 

We can use a parity argument to explain why a 5 x 5 rearrangement is not possible. Number

the seats as shown in the array below. Each odd-numbered seat is bordered by even-

numbered seats and vice versa. So, according to the rules, each student in an odd-numbered

seat must end up in an even-numbered seat. However, there are 13 odd-numbered seats and

only 12 even-numbered ones, so one odd chair must be empty and at least one even chair

must have two, snuggling students.

http://www2.edc.org/makingmath/mathtools/parity/parity.asp
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

5) Students have solved this problem in a number of ways. Here are three variations:

A. 9k � 1 factors to (9 � 1)( 9k � 1 + 9k � 2 + 9k � 3 + � + 1). The first factor is 8 and the

second factor is the sum of integers. Q.E.D.

B. Prove the claim inductively:

For k = 1, 91 � 1 = 8 which is divisible by 8.

Assume that 9k � 1 is divisible by 8. If so, then it equals 8m for some counting number m:

9k  � 1 = 8m

We want to show that the divisibility of 9k + 1 � 1 follows, so let�s multiply by 9:

9k +1 � 9 = 9(8m)

We don�t want �� 9�, so let�s add 8:

9k +1 � 1 = 9(8m) + 8

The right-hand side of this equation factors to 8(9m + 1), so 9k +1 � 1 is divisible by 8.

Q.E.D.

C. i.  9k � 1 = (8 + 1)k � 1

ii.  Expand (8 + 1)k. How can I expand (8 + 1)k ? The Binomial Expansion, which is a

polynomial so arranged that the exponents of the powers of one term (8) decrease in

magnitude, while the exponents of the powers of the second term (1) increase in

magnitude.

    
a + b( )k

= ak + kak −1b+
k k −1( )

2!
ak −2b2 +

k k −1( ) k −2( )
3!

ak −3b3 + ...+ kabk −1 + bk

The expansion of the binomial is the sum of the products of the first term, the second

term, and a coefficient. The exponents of the first term decrease from k to 0. The
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exponents of the second term increase from 0 to k. The coefficient increases in

magnitude until it reaches the middle term, then decreases.

The first term, ak, has a factor of a in it because it is multiplication of a times itself k

times. So the first term of the expansion has the first term of the binomial in it. Every

term in between the first term and the last term is a product of a, b, and a coefficient.

So all of these terms have factors of a and b in them. All these expansion terms have

factors of both the first and second binomial terms.

The last term of the expansion is just bk, which only has a factor of b, or the second

binomial term, in it.

    
8 + 1( )k

= 8k + k8k −11+
k k −1( )

2!
8k −212 +

k k −1( ) k −2( )
3!

8k −313 + ...+ k8⋅1k −1 + 1k

iii.  All of the terms in the polynomial expansion have a factor of the first term, 8, except

for the last term (because the exponent on the 8 was 0: 801k).

iv.  So every term except for the last is divisible by 8, because having a factor of a

number means it is divisible by that number.

v.  The last term in the expansion is 1k = 1.

vi.  (8 + 1)k � 1 = the binomial expansion above � 1. The � 1 cancels out the 1 (only term

not divisible by 8) in the expansion.

vii.  9 k � 1 = sum of terms which are all divisible by 8. Therefore, 8 divides 9k � 1.

Q.E.D.

Note that this last student proof talked about the coefficients and an irrelevant behavior

(increasing up to the middle term and then decreasing), but did not note the relevant

consideration that these coefficients were integers. Unless the coefficients are integers, we

cannot be sure that the factors of 8 remain in each term. The student was no doubt aware that

the coefficients were integers, but may not have thought about the importance of that fact.

This proof is longer than the others, but it was also clever in its use of the binomial

theorem, which required recognizing that 9 could be split into two monomials. Responses to

such a solution should note the creativity as well as highlight the particular technique, which

might be useful for solving other problems. This proof is typical of good student work in that



Page 40 Proof.doc

© Education Development Center, Inc. 2002 Making Mathematics: August 8, 2002

it reveals both sophisticated thinking and some still-missing understanding of a subtle idea

(in this case, the domain requirements for the coefficients).

What possibilities are there for generalization? All three proofs readily extend to show

that n k � 1 is divisible by n � 1.

6) Clearly, we do not want to undertake simulations of this problem to see what happens at the

end. We might start with a smaller number of beads to become more familiar with the rules

and possible outcomes. Ultimately, we need to think about the two bead replacement rules.

The first rule reduces the number of black beads by one, while leaving the number of white

beads unchanged. The second rule increases the number of black beads by one, while

reducing the number of white beads by two. So, we began with an odd number of white

beads and will always have an odd number of white beads because we can only subtract two

at a time (we are using both parity and invariance arguments here). When there is only one

bead left, it must be white (because we can not have 0, an even number, white beads). The

black bead total can also reach one, but there will still be at least one white bead left. (From

Scientific American (March 1991), 116)

7) The claim is false. One counterexample is 30. The general claim that ab divides N, if a and b

both divide N is true when a and b are relatively prime. The smallest N divisible by both a

and b is the LCM(a, b). So N = k 
.
  LCM(a, b). If a and b have no common factors (i.e., are

relatively prime), then the LCM(a, b) = ab and N = kab. Therefore, ab divides N.

8) To get a sense of the possibilities, we can start by picking numbers and looking at their factor

sets. We see that the portion of evens is 0 for 9 and 15, 1/2 for 6 and 30, and 2/3 for 12 and 36.

A) This is true for all odd numbers. An odd number has all odd prime factors, combinations

of which can only yield odd factors of the original number.

B) No whole number has this property. To have any even factors, a number must have at

least one factor of 2. For each odd factor of the original number, there is at least one

matching even factor found by including the 2. For example, the factors of 30 are 1 and 2, 3

and 6, 5 and 10, and 15 and 30 with each odd factor having an even partner. Therefore, for an

even number, at least one half of its factors must be even.

http://www2.edc.org/makingmath/mathtools/parity/parity.asp
http://www2.edc.org/makingmath/handbook/teacher/Conjectures/Conjectures.asp#Invariants
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C) For N =     2a . (odd factors), p(N) = a/(a + 1). The a + 1 factors of   2a  are {1, 2, 4, 8, ...,   2a }

and a of these are even. For the remaining odd factors of n, multiplication by this set creates

additional odd and even factors in this same proportion.

9) Let us break the problem down into different cases, each a different possible arrangement of

the five points. Begin with the convex hull (the smallest convex region that includes the

points) of the five points.

i) If exactly four of the points are vertices of the hull, then they are the sought-after set.

ii) If all five points are vertices of the hull (they define a convex pentagon), then any four of

them will be form a convex quadrilateral.

How do we know any four will suffice?

Lemma: We will prove this claim indirectly. If we assume that a subset of four points,

drawn from the vertices of a convex pentagon, make a non-convex quadrilateral, then one

of the points, P, would lie in the interior of a triangle formed by the other three. The

addition of the fifth point cannot affect P�s relationship with the other three points and so

P must lie within the convex hull for all five points. However, that conclusion contradicts

our given that all five were on the perimeter of the hull, so any subset of four points must

also be convex.

iii) If only three of the five points lie on the perimeter of the convex hull, then two are in the

interior of the triangle made by those three. Construct the line containing those two

interior points. It must pass through two of the sides of the triangle (it can�t pass through

a vertex or we would have three collinear points). Discount the vertex that is an endpoint

of those two sides (see diagram below�why a diagram now? Because we think our

words will be clearer with it. We are also hopeful that a reader could have constructed

the diagram herself). The remaining four points will form a convex quadrilateral. For a

non-convex quadrilateral, each pair of opposite sides has a side whose extension

intersects its opposite partner. For the four chosen points, the two from the triangle (A

and B) were chosen because line DE, defined by the two interior points, did not intersect

segment AB. Likewise, we know that an extension of segment AB will not intersect

segment DE, because that segment is in the interior of the triangle (or any other convex

figure) and the extensions of the sides of a triangle do not intersect the triangle�s interior.
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Therefore, The four points are not the vertices of a non-convex quadrilateral. (This was

an informal indirect proof—do you see why?).

CA

B

D
E

iv) The above are the only three cases possible. The convex hull cannot be a segment or the

five points would be collinear contradicting a condition of the theorem. (Adapted from

Hoffman, 74.)

10) There are counterexamples to this claim: for example, the subset {1, 2, 3, 5} taken from the

set {1, 2, 3, 4, 5, 6}. However, the theorem is salvageable if we add the condition n > 4. At

most one of the n + 1 numbers can be even (two evens cannot be relatively prime), so the

remaining n numbers must be all of the odds in the set. So once n is larger than 4, we have 3

and 9 in the set and they are not relatively prime.

We can get a better bound on the number of relatively prime numbers possible. Let p be the

number of distinct prime factors within the numbers from 1 to 2n. Two numbers will be

relatively prime if they have none of those p factors in common. Therefore, we can have at

most p + 1 different relatively prime numbers, the p primes (or powers of them) and 1. If we

choose a number for our set that has more than one prime factor, that reduces the number we

can choose before a pair has a common factor. The prime number theorem tells us that the

number of primes up to a given number grows far more slowly than the original n + 1 limit.

11) A set of n + 1 distinct counting numbers less than or equal to 2n will include at least two

numbers that are neighbors  and these will be relatively prime. (Hoffman, 132.) Can you

prove the claim that two of the numbers must be neighbors using the pigeonhole principle?

Hint: make your holes the number pairs {1, 2}, {3, 4}, {5, 6}, �, {2n � 1, 2n}.

12) This claim is false. In the example below, the rust colored lines are two quadrilaterals with

three vertices, A, B, and C, in common (D and E have been swapped). The shaded regions are

the convex hulls and they have no sides in common. The challenge is to intentionally look for

special cases and not confirming examples�to think about the leeway provided by the one

point that is not common to the two figures.

http://www2.edc.org/makingmath/mathtools/pigeonhole/pigeonhole.asp
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D

A

C

B
A

E

B

CD

E

13) No coloring is possible. No two columns can have the same pattern of colors, or whichever

color appears at least twice will make the corners of a rectangle. Therefore, we need 7

different column patterns. If any column contains three black boxes, then no other column

can have two black boxes or those two along with two of the original three will form the

corners of a rectangle. An all-red column similarly restricts our choices. There are only 8

different possible columns (2 color choices in 3 spots) and 7 columns to fill, so we can only

avoid one pattern. Therefore, we will have at least one all-red or all-black column as well as

columns with two reds or blacks that complete a rectangle. What are the maximum widths for

rectangle-free colorings for boards of height 2, 4, 5, etc.? What if you allow additional

colors?

14) Let�s start with the base case for an inductive proof. When n = 0, we have a 1-digit number

which is always divisible by 1. Assume all numbers with 3n identical digits are divisible by

3n. Numbers with 3n+1 identical digits are three consecutive identical 3n-digit numbers

catenated and are equal to

    
102 ⋅3n

+103n
+1� 

� 
� 
� a number with 3n  identical digits( ).

For example, 444444444444444444444444444 = (1018 + 109 + 1)(444444444). The first

factor above is an integer with three 1�s and (in all but one case) interspersed zeroes. Its

digits sum to 3 so that factor is divisible by 3. Therefore, it contributes one more factor of 3

to the 3n contributed by the catenated number of 3n digits and we have a total factor of  3n+1.

15) Let�s give our rule for the number of squares intersected by the diagonal a name, S(m, n).

After drawing diagrams and gathering data for different combinations of m and n, we see
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some patterns. When we hold m constant, S is largest when m and n have no common factors.

S is smallest when n divides m.

The diagrams help us to understand the patterns: when m and n are relatively prime, the

diagonal does not pass through vertices of the squares except for the two at its endpoints. If

we trace the path of the diagonal, we see that it will only enter the interior of a new square

when it crosses a horizontal or vertical line in the grid. It will cross m � 1 vertical grid lines

and n � 1 horizontal grid lines. Since the diagonal begins in a square, it will intersect a total

of 1 + (m � 1) + (n � 1) squares. So, when m and n are relatively prime (GCF(m, n) = 1),

S(m, n) = m + n � 1.

But when m and n have a common factor, the diagonal passes through vertices of the squares,

which means it passes through horizontal and vertical grid lines at the same time and hits that

many fewer interiors. The diagonal hits GCF(m, n) � 1 vertices within the rectangle which

reduces the total number of squares hit to

S(m, n) = m + n � 1 � (GCF(m, n) � 1) = m + n � GCF(m, n).

We have a formula that works, but let�s back up a bit before we declare our proof complete.

We made claims about the behavior of the diagonal for different m and n that we did not

justify (except to point to the diagrams). How do we know that the diagonal will not pass

through any vertices when m and n are relatively prime? The slope of the diagonal is constant

and is n/m. If the diagonal passes through an interior point (a, b), then we know b/a = n/m.,

with b < n and a < m. But, if m and n have no common factors, then the slope cannot reduce

to an equal fraction and no such point is possible.

n

m

(a, b)

If m and n have a common factor, k, then there are k � 1 points that are on the diagonal

because they have the same ratio as m and n: (m/k  ,  n /k),  (2m/k  ,  2n /k),  (3m/k  ,  3n /k),�,

((k�1)m/k  ,  (k�1)n /k).
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We can also derive our full formula recursively. Once we have the formula for relatively

prime cases, S(m, n) = m + n � 1, we look at the cases with m and n having a common factor

k = GCF(m, n). The diagonal will pass through k smaller rectangles with relatively prime

sides. Our total is, therefore,

S(m, n) = k .S(m /k ,  n /k) = k(m/k  + n /k  � 1) = m + n � k  or m + n � GCF(m, n).

This formula reduces to our special case formula when the greatest common factor is 1, so it

covers all cases. Can students generalize this problem and solution to higher dimensions? To

other grids?

16) We cannot add and subtract the numbers to yield 10. We again use parity arguments to

support our proof. The sum of 1 through 9 is 45. If we choose to subtract some of these

numbers rather than add them, then our total of 45 will be reduced by twice that value,

because the value is no longer being added and it is being subtracted. Symbolically, we note

that A + B is 2B greater than A � B. Therefore, we can only reduce our sum of 45 by even

amounts and the total will always be odd. 10 is not odd and so is not attainable. (This

problem was adapted from Erickson and Flowers.)

17) We can choose no more than 4 points that meet this condition. The midpoint has coordinates

that are the average of the coordinates of the endpoints. The coordinate of a midpoint will be

an integer only if the corresponding coordinates of the endpoints have the same parity (so

that they sum to an even before being divided by 2). Therefore, we need five points, no two

of which have coordinates with the same parity. There are only four possible combinations of

odd and even x- and y-coordinates, so the task cannot be accomplished. (This problem was

adapted from Erickson and Flowers.)

18) This problem poses a common challenge: to show that two sets are the same size. To do so,

we do not have to know the actual size of either; we can instead establish a correspondence

between the elements of the sets. Imagine having two large jars of jellybeans and wanting to

know if the quantities are the same. You could count each jar separately and compare the

totals or you could take one bean from each jar and put them aside in pairs. In the second

case, you would not need to know how many pairs you removed, just whether one jar had

any beans left after the other was empty. Likewise, we can compare two sets mathematically

by establishing a pairing without having to determine the size of either set.

http://www2.edc.org/makingmath/mathtools/parity/parity.asp
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As students explore this problem, they may need a way to systematically list all of the

permutations of n numbers. They may know or need to discover that there are n!

permutations for n elements.

If we look at a list of all 4-element permutations and their scores sorted in numerical order

(e.g., 2314 comes before 2431), we notice a symmetry to the scores. There is a 3 at the top, a

0 at the bottom of the list, and scores of 1 and 2 mirror each other:

Permutation Score
1 2 3 4 3
1 2 4 3 2
1 3 2 4 2
1 3 4 2 2
1 4 2 3 2
1 4 3 2 1
2 1 3 4 2
2 1 4 3 1
2 3 1 4 2
2 3 4 1 2
2 4 1 3 2
2 4 3 1 1
3 1 2 4 2
3 1 4 2 1
3 2 1 4 1
3 2 4 1 1
3 4 1 2 2
3 4 2 1 1
4 1 2 3 2
4 1 3 2 1
4 2 1 3 1
4 2 3 1 1
4 3 1 2 1
4 3 2 1 0

Next, we need to figure out what the connection is between the symmetrically located lists.

How is 1432 related to 4123? Each is the 5�s complement of the other. That is, one list can be

found by subtracting each element of the other list from 5. For an adjacent pair of elements,

xy, if x < y, then  � x > � y and 5 � x > 5 � y. Therefore, each adjacent pair that contributed to
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a permutation�s score will not contribute to the score for its complementary sequence and

vice versa. Since each pair will contribute to either one sequence or the other, the total score

for the two sequences will equal the number of adjacent pairs, n � 1, and the average score

for that pair will be (n � 1)/2. Each permutation is the 5�s complement of its 5�s complement

(the operation is its own inverse) and so each has a unique partner. Since all permutations

have one partner and all such pairings have the same average, then An = (n � 1)/2. Since each

pair also has this average, both lists within a pair will equal An or one will be greater and the

other will be less than An. Therefore, there are as many lists above the average as below

(which was what we wanted).

There is an alternative correspondence possible. We can match each sequence, S, with its

reversal, S'. If sequence S has a score of s, S' will have a score of n � 1 � s. There are n � 1

comparisons and each will contribute to the score for either a list or its reversal but not both

(reversing the lists reverses the order of the inequalities). Therefore, the total of the scores for

S and S' will be n � 1 and we can proceed as above.

19) The three numbers must be equal. Proof 1: If m divides n, n divides p, and p divides m, then

there must be three whole numbers j, k, and l, such that 
  
j =

n
m

, k =
p
n

, and  l =
m
p

. Multiply

these three equations to yield 
    
j ⋅ k ⋅ l =

n
m

⋅
p
n

⋅
m
p

= 1. If the product of three whole numbers is

1, then all three equal 1. Since j, k, and l are all 1, the three rational equations above give us n

= m, p = n, and m = p and so all three are equal.

Proof 2: We can ignore some of the information in our givens and just draw from divisibility

a simple inequality. Namely, if m divides n, then m ≤  n. Likewise, n ≤  p and p ≤  m. These

latter two combine to give n ≤  m. The other two pairings of the inequalities yield m ≤  p and

p ≤  n. We now have p ≤  n and n ≤  p, so n = p. With m ≤  n and n ≤  m, n = m. So n = p = m.

20) To show that two statements are interchangeable, we need to show that each implies the

other. We cannot just prove the connection in one direction. To show that three statements

are equivalent, we can show interchangeability pairwise or in a circle:
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A �  B: B �  C: C �  A:

x > y
    
x + y

2
< x

  
x + y

2
> y

    
x
2

>
y
2   

y
2

<
x
2     

x
2

>
y
2

    
x >

y
2

+
x
2     

y <
x
2

+
y
2

x > y

This sequence suffices, because A �  B and B �  C gives us the A �  C we needed to go

along with the C �  A that we proved directly. We can get the remaining two implications

in a similar fashion.
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